123
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Endothelial FAK is required for tumour angiogenesis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that plays a fundamental role in integrin and growth factor mediated signalling and is an important player in cell migration and proliferation, processes vital for angiogenesis. However, the role of FAK in adult pathological angiogenesis is unknown. We have generated endothelial-specific tamoxifen-inducible FAK knockout mice by crossing FAK-floxed (FAKfl/fl) mice with the platelet derived growth factor b ( Pdgfb)-iCreER mice. Tamoxifen-treatment of Pdgfb-iCreER;FAKfl/fl mice results in FAK deletion in adult endothelial cells (ECs) without any adverse effects. Importantly however, endothelial FAK-deletion in adult mice inhibited tumour growth and reduced tumour angiogenesis. Furthermore, in in vivo angiogenic assays FAK deletion impairs vascular endothelial growth factor (VEGF)-induced neovascularization. In addition, in vitro deletion of FAK in ECs resulted in reduced VEGF-stimulated Akt phosphorylation and correlating reduced cellular proliferation as well as increased cell death. Our data suggest that FAK is required for adult pathological angiogenesis and validates FAK as a possible target for anti-angiogenic therapies.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis.

          New blood vessel formation (angiogenesis) is a fundamental event in the process of tumor growth and metastatic dissemination. Hence, the molecular basis of tumor angiogenesis has been of keen interest in the field of cancer research. The vascular endothelial growth factor (VEGF) pathway is well established as one of the key regulators of this process. The VEGF/VEGF-receptor axis is composed of multiple ligands and receptors with overlapping and distinct ligand-receptor binding specificities, cell-type expression, and function. Activation of the VEGF-receptor pathway triggers a network of signaling processes that promote endothelial cell growth, migration, and survival from pre-existing vasculature. In addition, VEGF mediates vessel permeability, and has been associated with malignant effusions. More recently, an important role for VEGF has emerged in mobilization of endothelial progenitor cells from the bone marrow to distant sites of neovascularization. The well-established role of VEGF in promoting tumor angiogenesis and the pathogenesis of human cancers has led to the rational design and development of agents that selectively target this pathway. Studies with various anti-VEGF/VEGF-receptor therapies have shown that these agents can potently inhibit angiogenesis and tumor growth in preclinical models. Recently, an anti-VEGF antibody (bevacizumab), when used in combination with chemotherapy, was shown to significantly improve survival and response rates in patients with metastatic colorectal cancer and thus, validate VEGF pathway inhibitors as an important new treatment modality in cancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vascular-specific growth factors and blood vessel formation.

            A recent explosion in newly discovered vascular growth factors has coincided with exploitation of powerful new genetic approaches for studying vascular development. An emerging rule is that all of these factors must be used in perfect harmony to form functional vessels. These new findings also demand re-evaluation of therapeutic efforts aimed at regulating blood vessel growth in ischaemia, cancer and other pathological settings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Integrin-regulated FAK-Src signaling in normal and cancer cells.

              Integrins can alter cellular behavior through the recruitment and activation of signaling proteins such as non-receptor tyrosine kinases including focal adhesion kinase (FAK) and c-Src that form a dual kinase complex. The FAK-Src complex binds to and can phosphorylate various adaptor proteins such as p130Cas and paxillin. In normal cells, multiple integrin-regulated linkages exist to activate FAK or Src. Activated FAK-Src functions to promote cell motility, cell cycle progression and cell survival. Recent studies have found that the FAK-Src complex is activated in many tumor cells and generates signals leading to tumor growth and metastasis. As both FAK and Src catalytic activities are important in promoting VEGF-associated tumor angiogenesis and protease-associated tumor metastasis, support is growing that FAK and Src may be therapeutically relevant targets in the inhibition of tumor progression.
                Bookmark

                Author and article information

                Journal
                EMBO Mol Med
                EMBO Mol Med
                emmm
                EMBO Molecular Medicine
                WILEY-VCH Verlag (Weinheim )
                1757-4676
                1757-4684
                December 2010
                : 2
                : 12
                : 516-528
                Affiliations
                [1 ]simpleAdhesion and Angiogenesis Laboratory, Centre of Tumour Biology, Institute of Cancer and Cancer Research UK Clinical Centre, Barts & The London, Queen Mary's School of Medicine & Dentistry John Vane Science Centre, Charterhouse Square, London, UK
                [2 ]simpleUniversity College London, Institute of Ophthalmology London, UK
                [3 ]simpleVascular Adhesion Laboratory, BSRC Al. Fleming Vari, Athens, Greece
                [4 ]simpleThe Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London London, UK
                Author notes
                * Corresponding author: Tel: +44 (0) 207 882 3576; Fax: +44 (0) 207 882 3884; E-mail: k.hodivala-dilke@ 123456qmul.ac.uk
                [†]

                Centre of Tumour Biology.

                Article
                10.1002/emmm.201000106
                3377344
                21154724
                bfebb8dc-8ba1-4898-80f7-0f1a004dae8e
                Copyright © 2010 EMBO Molecular Medicine
                History
                : 18 March 2010
                : 12 November 2010
                : 12 November 2010
                Categories
                Research Articles

                Molecular medicine
                angiogenesis,tumour,endothelial,cancer,fak
                Molecular medicine
                angiogenesis, tumour, endothelial, cancer, fak

                Comments

                Comment on this article