9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biochemical characterization of the O-linked glycosylation pathway in Neisseria gonorrhoeae responsible for biosynthesis of protein glycans containing N,N'-diacetylbacillosamine.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The O-linked protein glycosylation pathway in Neisseria gonorrhoeae is responsible for the synthesis of a complex oligosaccharide on undecaprenyl diphosphate and subsequent en bloc transfer of the glycan to serine residues of select periplasmic proteins. Protein glycosylation (pgl) genes have been annotated on the basis of bioinformatics and top-down mass spectrometry analysis of protein modifications in pgl-null strains [Aas, F. E., et al. (2007) Mol. Microbiol. 65, 607-624; Vik, A., et al. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 4447-4452], but relatively little biochemical analysis has been performed to date. In this report, we present the expression, purification, and functional characterization of seven Pgl enzymes. Specifically, the enzymes studied are responsible for synthesis of an uncommon uridine diphosphate (UDP)-sugar (PglD, PglC, and PglB-acetyltransferase domain), glycan assembly (PglB-phospho-glycosyltransferase domain, PglA, PglE, and PglH), and final oligosaccharide transfer (PglO). UDP-2,4-diacetamido-2,4,6-trideoxy-α-d-hexose (DATDH), which is the first sugar in glycan biosynthesis, was produced enzymatically, and the stereochemistry was assigned as uridine diphosphate N'-diacetylbacillosamine (UDP-diNAcBac) by nuclear magnetic resonance characterization. In addition, the substrate specificities of the phospho-glycosyltransferase, glycosyltransferases, and oligosaccharyltransferase (OTase) were analyzed in vitro, and in most cases, these enzymes exhibited strong preferences for the native substrates relative to closely related glycans. In particular, PglO, the O-linked OTase, and PglB(Cj), the N-linked OTase from Campylobacter jejuni, preferred the native N. gonorrhoeae and C. jejuni substrates, respectively. This study represents the first comprehensive biochemical characterization of this important O-linked glycosylation pathway and provides the basis for further investigations of these enzymes as antibacterial targets.

          Related collections

          Author and article information

          Journal
          Biochemistry
          Biochemistry
          American Chemical Society (ACS)
          1520-4995
          0006-2960
          Jun 07 2011
          : 50
          : 22
          Affiliations
          [1 ] Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
          Article
          NIHMS295673
          10.1021/bi2003372
          3108506
          21542610
          bfeff5e2-199c-4332-b010-8a23a1a7894a
          History

          Comments

          Comment on this article