24
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanoethosomal transdermal delivery of vardenafil for treatment of erectile dysfunction: optimization, characterization, and in vivo evaluation

      research-article
      Drug Design, Development and Therapy
      Dove Medical Press
      Box-Behnken design, impotence, vesicles, nanoparticles

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vesicular drug delivery systems have recently gained attention as a way of improving dosing accuracy for drugs with poor transdermal permeation. The current study focuses on utilization of the natural biocompatible vesicles to formulate vardenafil nanoethosomes (VRD-NE), for the enhancement of their transdermal permeation and bioavailability. Fifteen formulations were prepared by thin-layer evaporation technique according to Box–Behnken design to optimize formulation variables. The effects of lipid composition, sonication time, and ethanol concentration on particle size and encapsulation efficiency were studied. The diffusion of vardenafil (VRD) from the prepared nanoethosomes specified by the design was carried out using automated Franz diffusion cell apparatus. The optimized formula was investigated for in vivo pharmacokinetic parameters compared with oral VRD suspension. Confocal laser scanning microscopy images were used to confirm enhanced diffusion release of VRD in rat skin. The results showed that the optimized formula produced nanoethosomes with an average size of 128 nm and an entrapment efficiency of 76.23%. VRD-NE provided a significant improvement in permeation with an enhancement ratio of 3.05-fold for a film made with optimally formulated VRD-NE compared with a film made with VRD powder. The transdermal bioavailability of VRD from the nanoethosome film was approximately twofold higher than the oral bioavailability from an aqueous suspension. VRD-NE thus provide a promising transdermal drug delivery system. As a result, management of impotence for a longer duration could be achieved with a reduced dosage rate that improves patient tolerability and compliance for the treatment of erectile dysfunction.

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties.

          This work describes a novel carrier for enhanced skin delivery, the ethosomal system, which is composed of phospholipid, ethanol and water. Ethosomal systems were much more efficient at delivering a fluorescent probe to the skin in terms of quantity and depth, than either liposomes or hydroalcoholic solution. The ethosomal system dramatically enhanced the skin permeation of minoxidil in vitro compared with either ethanolic or hydroethanolic solution or phospholipid ethanolic micellar solution of minoxidil. In addition, the transdermal delivery of testosterone from an ethosomal patch was greater both in vitro and in vivo than from commercially available patches. Skin permeation of ethosomal components, ethanol and phospholipid, was demonstrated in diffusion-cell experiments. Ethosomal systems composed of soy phosphatidylcholine 2%, ethanol 30% and water were shown by electron microscopy to contain multilamellar vesicles. 31P-NMR studies confirmed the bilayer configuration of the lipids. Calorimetry and fluorescence measurements suggested that the vesicular bilayers are flexible, having a relatively low T(m) and fluorescence anisotropy compared with liposomes obtained in the absence of ethanol. Dynamic light scattering measurements indicated that ethanol imparted a negative charge to the vesicles. The average vesicle size, as measured by dynamic light scattering, was modulated by altering the ethosome composition. Experiments using fluorescent probes and ultracentrifugation showed that the ethosomes had a high entrapment capacity for molecules of various lyophilicities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anatomy, physiology, and pathophysiology of erectile dysfunction.

            Significant scientific advances during the past 3 decades have deepened our understanding of the physiology and pathophysiology of penile erection. A critical evaluation of the current state of knowledge is essential to provide perspective for future research and development of new therapies. To develop an evidence-based, state-of-the-art consensus report on the anatomy, physiology, and pathophysiology of erectile dysfunction (ED). Consensus process over a period of 16 months, representing the opinions of 12 experts from seven countries. Expert opinion was based on the grading of scientific and evidence-based medical literature, internal committee discussion, public presentation, and debate. ED occurs from multifaceted, complex mechanisms that can involve disruptions in neural, vascular, and hormonal signaling. Research on central neural regulation of penile erection is progressing rapidly with the identification of key neurotransmitters and the association of neural structures with both spinal and supraspinal pathways that regulate sexual function. In parallel to advances in cardiovascular physiology, the most extensive efforts in the physiology of penile erection have focused on elucidating mechanisms that regulate the functions of the endothelium and vascular smooth muscle of the corpus cavernosum. Major health concerns such as atherosclerosis, hyperlipidemia, hypertension, diabetes, and metabolic syndrome (MetS) have become well integrated into the investigation of ED. Despite the efficacy of current therapies, they remain insufficient to address growing patient populations, such as those with diabetes and MetS. In addition, increasing awareness of the adverse side effects of commonly prescribed medications on sexual function provides a rationale for developing new treatment strategies that minimize the likelihood of causing sexual dysfunction. Many basic questions with regard to erectile function remain unanswered and further laboratory and clinical studies are necessary.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes.

              Proniosomal gels or solutions of flurbiprofen were developed based on span 20 (Sp 20), span 40 (Sp 40), span 60 (Sp 60), and span 80 (Sp 80) without and with cholesterol. Nonionic surfactant vesicles (niosomes) formed immediately upon hydrating proniosomal formulae. The entrapment efficiency (EE%) of flurbiprofen (a poorly soluble drug) was either determined by exhaustive dialysis of freshly prepared niosomes or centrifugation of freeze-thawed vesicles. The influence of different processing and formulation variables such as surfactant chain length, cholesterol content, drug concentration, total lipid concentration, negatively or positively charging lipids, and the pH of the dispersion medium on flurbiprofen EE% was demonstrated. Also, the release of the prepared niosomes in phosphate buffer (pH 7.4) was illustrated. Results indicated that the EE% followed the trend Sp 60 (C(18))>Sp 40 (C(16))>Sp 20 (C(12))>Sp 80 (C(18)). Cholesterol increased or decreased the EE% depending on either the type of the surfactant or its concentration within the formulae. The maximum loading efficiency was 94.61% when the hydrating medium was adjusted to pH 5.5. Increasing total lipid or drug concentration also increased the EE% of flurbiprofen into niosomes. However, incorporation of either dicetyl phosphate (DCP) which induces negative charge or stearyl amine (SA) which induces positive charge decreased the EE% of flurbiprofen into niosomal vesicles. Finally, in vitro release data for niosomes of Sp 40 and Sp 60 showed that the release profiles of flurbiprofen from niosomes of different cholesterol contents is an apparently biphasic release process. As a result, this study suggested the potential of proniosomes as stable precursors for the immediate preparation of niosomal carrier systems.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2015
                18 November 2015
                : 9
                : 6129-6137
                Affiliations
                Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
                Author notes
                Correspondence: Usama A Fahmy, Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, PO Box 80200, 21589 Jeddah, Saudi Arabia, Email usamafahmy@ 123456hotmail.com
                Article
                dddt-9-6129
                10.2147/DDDT.S94615
                4655965
                26604700
                bff154d4-878f-45c4-b963-04ab3c582f4c
                © 2015 Fahmy. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                box-behnken design,impotence,vesicles,nanoparticles
                Pharmacology & Pharmaceutical medicine
                box-behnken design, impotence, vesicles, nanoparticles

                Comments

                Comment on this article