11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sun Exposure and Melanoma, Certainties and Weaknesses of the Present Knowledge

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sun exposure is the main risk factor for cutaneous malignant melanoma (CMM). However, the UV-related pathogenetic mechanisms leading to CMM are far to be fully elucidated. In this paper we will focus on what we still don't fully know about the relationship between UVR and CMM. In particular, we will discuss: the action spectrum of human CMM, how different modalities of exposure (continuous/ intermittent; erythemal/ suberythemal) relate to different CMM variants, the preferential UVR induced DNA mutations observed in different CMM variants, the role of UV-related and UV-unrelated genetic damages in the same melanoma cells. Moreover, we will debate the importance of UVA induced oxidative and anaerobic damages to DNA and other cell structures and the role of melanins, of modulation of innate and acquired immunity, of vitamin D and of chronic exposure to phototoxic drugs and other xenobiotics. A better understanding of these issues will help developing more effective preventative strategies and new therapeutic approaches.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Mitf regulation of Dia1 controls melanoma proliferation and invasiveness.

          It is widely held that cells with metastatic properties such as invasiveness and expression of matrix metalloproteinases arise through the stepwise accumulation of genetic lesions arising from genetic instability and "clonal evolution." By contrast, we show here that in melanomas invasiveness can be regulated epigenetically by the microphthalmia-associated transcription factor, Mitf, via regulation of the DIAPH1 gene encoding the diaphanous-related formin Dia1 that promotes actin polymerization and coordinates the actin cytoskeleton and microtubule networks at the cell periphery. Low Mitf levels lead to down-regulation of Dia1, reorganization of the actin cytoskeleton, and increased ROCK-dependent invasiveness, whereas increased Mitf expression leads to decreased invasiveness. Significantly the regulation of Dia1 by Mitf also controls p27(Kip1)-degradation such that reduced Mitf levels lead to a p27(Kip1)-dependent G1 arrest. Thus Mitf, via regulation of Dia1, can both inhibit invasiveness and promote proliferation. The results imply variations in the repertoire of environmental cues that determine Mitf activity will dictate the differentiation, proliferative, and invasive/migratory potential of melanoma cells through a dynamic epigenetic mechanism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            KIT gene mutations and copy number in melanoma subtypes.

            We recently identified a KIT exon 11 mutation in an anorectal melanoma of a patient who had an excellent response to treatment with imatinib. To determine the frequency of KIT mutations across melanoma subtypes, we surveyed a large series of tumors. One hundred eighty-nine melanomas were screened for mutations in KIT exons 11, 13, and 17. KIT copy number was assessed by quantitative PCR. A subset of cases was evaluated for BRAF and NRAS mutations. Immunohistochemistry was done to assess KIT (CD117) expression. KIT mutations were detected in 23% (3 of 13) of acral melanomas, 15.6% (7 of 45) of mucosal melanomas, 7.7% (1 of 13) of conjunctival melanomas, 1.7% (1 of 58) of cutaneous melanomas, and 0% (0 of 60) of choroidal melanomas. Almost all the KIT mutations were of the type predicted to be imatinib sensitive. There was no overlap with NRAS mutations (11.1% of acral and 24.3% of mucosal tumors) or with BRAF mutations (absent in mucosal tumors). Increased KIT copy number was detected in 27.3% (3 of 11) of acral and 26.3% (10 of 38) of mucosal melanomas, but was less common among cutaneous (6.7%; 3 of 45), conjunctival (7.1%; 1 of 14), and choroidal melanomas (0 of 28). CD117 expression, present in 39% of 105 tumors representing all melanoma types, did not correlate with either KIT mutation status or KIT copy number. Our findings confirm that KIT mutations are most common in acral and mucosal melanomas but do not necessarily correlate with KIT copy number or CD117 expression. Screening for KIT mutations may open up new treatment options for melanoma patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers.

              Loss of heterozygosity on chromosome 9p21 is one of the most frequent genetic alterations identified in human cancer. The rate of point mutations of p16, a candidate suppressor gene of this area, is low in most primary tumours with allelic loss of 9p21. Monosomic cell lines with structurally unaltered p16 show methylation of the 5' CpG island of p16. This distinct methylation pattern was associated with a complete transcriptional block that was reversible upon treatment with 5-deoxyazacytidine. Moreover, de novo methylation of the 5' CpG island of p16 was also found in approximately 20% of different primary neoplasms, but not in normal tissues, potentially representing a common pathway of tumour suppressor gene inactivation in human cancers.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Med (Lausanne)
                Front Med (Lausanne)
                Front. Med.
                Frontiers in Medicine
                Frontiers Media S.A.
                2296-858X
                30 August 2018
                2018
                : 5
                : 235
                Affiliations
                Department of Dermatology, Spedali Civili di Brescia, University of Brescia , Brescia, Italy
                Author notes

                Edited by: Frank Ronald De Gruijl, Leiden University Medical Center, Netherlands

                Reviewed by: Salvador Gonzalez, University of Alcalá, Spain; Uffe Koppelhus, Skejby Sygehus, Denmark

                *Correspondence: Chiara Rovati c.rovati001@ 123456unibs.it

                This article was submitted to Dermatology, a section of the journal Frontiers in Medicine

                Article
                10.3389/fmed.2018.00235
                6126418
                30214901
                bffcc439-a690-415b-ad3f-db488e244a85
                Copyright © 2018 Arisi, Zane, Caravello, Rovati, Zanca, Venturini and Calzavara-Pinton.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 June 2018
                : 03 August 2018
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 78, Pages: 8, Words: 5894
                Categories
                Medicine
                Perspective

                melanoma,sun exposure,vitamin d,uva,uvb
                melanoma, sun exposure, vitamin d, uva, uvb

                Comments

                Comment on this article