12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hierarchies in light sensing and dynamic interactions between ocular and extraocular sensory networks in a flatworm

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Light matters! Flatworms reveal stunning complexity in light-induced behaviors and comparative processing.

          Abstract

          Light sensing has independently evolved multiple times under diverse selective pressures but has been examined only in a handful among the millions of light-responsive organisms. Unsurprisingly, mechanistic insights into how differential light processing can cause distinct behavioral outputs are limited. We show how an organism can achieve complex light processing with a simple “eye” while also having independent but mutually interacting light sensing networks. Although planarian flatworms lack wavelength-specific eye photoreceptors, a 25 nm change in light wavelength is sufficient to completely switch their phototactic behavior. Quantitative photoassays, eye-brain confocal imaging, and RNA interference/knockdown studies reveal that flatworms are able to compare small differences in the amounts of light absorbed at the eyes through a single eye opsin and convert them into binary behavioral outputs. Because planarians can fully regenerate, eye-brain injury-regeneration studies showed that this acute light intensity sensing and processing are layered on simple light detection. Unlike intact worms, partially regenerated animals with eyes can sense light but cannot sense finer gradients. Planarians also show a “reflex-like,” eye-independent (extraocular/whole-body) response to low ultraviolet A light, apart from the “processive” eye-brain–mediated (ocular) response. Competition experiments between ocular and extraocular sensory systems reveal dynamic interchanging hierarchies. In intact worms, cerebral ocular response can override the reflex-like extraocular response. However, injury-regeneration again offers a time window wherein both responses coexist, but the dominance of the ocular response is reversed. Overall, we demonstrate acute light intensity–based behavioral switching and two evolutionarily distinct but interacting light sensing networks in a regenerating organism.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          In search of the visual pigment template

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fundamentals of planarian regeneration.

            The principles underlying regeneration in planarians have been explored for over 100 years through surgical manipulations and cellular observations. Planarian regeneration involves the generation of new tissue at the wound site via cell proliferation (blastema formation), and the remodeling of pre-existing tissues to restore symmetry and proportion (morphallaxis). Because blastemas do not replace all tissues following most types of injuries, both blastema formation and morphallaxis are needed for complete regeneration. Here we discuss a proliferative cell population, the neoblasts, that is central to the regenerative capacities of planarians. Neoblasts may be a totipotent stem-cell population capable of generating essentially every cell type in the adult animal, including themselves. The population properties of the neoblasts and their descendants still await careful elucidation. We identify the types of structures produced by blastemas on a variety of wound surfaces, the principles guiding the reorganization of pre-existing tissues, and the manner in which scale and cell number proportions between body regions are restored during regeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In search of the visual pigment template.

              Absorbance spectra were recorded by microspectrophotometry from 39 different rod and cone types representing amphibians. reptiles, and fishes, with A1- or A2-based visual pigments and lambdamax ranging from 357 to 620 nm. The purpose was to investigate accuracy limits of putative universal templates for visual pigment absorbance spectra, and if possible to amend the templates to overcome the limitations. It was found that (1) the absorbance spectrum of frog rhodopsin extract very precisely parallels that of rod outer segments from the same individual, with only a slight hypsochromic shift in lambdamax, hence templates based on extracts are valid for absorbance in situ: (2) a template based on the bovine rhodopsin extract data of Partridge and De Grip (1991) describes the absorbance of amphibian rod outer segments excellently, contrary to recent electrophysiological results; (3) the lambdamax/lambda invariance of spectral shape fails for A1 pigments with small lambdamax and for A2 pigments with large lambdamax, but the deviations are systematic and can be readily incorporated into, for example, the Lamb (1995) template. We thus propose modified templates for the main "alpha-band" of A1 and A2 pigments and show that these describe both absorbance and spectral sensitivities of photoreceptors over the whole range of lambdamax. Subtraction of the alpha-band from the full absorbance spectrum leaves a "beta-band" described by a lambdamax-dependent Gaussian. We conclude that the idea of universal templates (one for A1- and one for A2-based visual pigments) remains valid and useful at the present level of accuracy of data on photoreceptor absorbance and sensitivity. The sum of our expressions for the alpha- and beta-band gives a good description for visual pigment spectra with lambdamax > 350 nm.
                Bookmark

                Author and article information

                Journal
                Sci Adv
                Sci Adv
                SciAdv
                advances
                Science Advances
                American Association for the Advancement of Science
                2375-2548
                July 2017
                28 July 2017
                : 3
                : 7
                : e1603025
                Affiliations
                [1 ]Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, GKVK Post, Bangalore 560065, India.
                [2 ]Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Tirumalaisamudram, Thanjavur 613401, India.
                [3 ]National Centre for Biological Sciences, GKVK Post, Bangalore 560065, India.
                Author notes
                [* ]Corresponding author. Email: akashg@ 123456instem.res.in (A.G.); dasaradhip@ 123456instem.res.in (D.P.)
                Article
                1603025
                10.1126/sciadv.1603025
                5533540
                28782018
                c02db4c0-5f87-4eb4-8bd1-60cdfd7c1767
                Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

                History
                : 01 December 2016
                : 27 June 2017
                Funding
                Funded by: doi http://dx.doi.org/10.13039/501100001407, Department of Biotechnology , Ministry of Science and Technology;
                Award ID: award320939
                Categories
                Research Article
                Research Articles
                SciAdv r-articles
                Life Sciences
                Life Sciences
                Custom metadata
                Nova Morabe

                Comments

                Comment on this article