5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Resiquimod-loaded cationic liposomes cure mice with peritoneal carcinomatosis and induce specific anti-tumor immunity

      , , , ,
      Journal of Controlled Release
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Successful Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving the Cytokines IFN-γ and IL-12

          Anti-PD-1 immune checkpoint blockers can induce sustained clinical responses in cancer but how they function in vivo remains incompletely understood. Here, we combined intravital real-time imaging with single-cell RNA sequencing analysis and mouse models to uncover anti-PD-1 pharmacodynamics directly within tumors. We showed that effective antitumor responses required a subset of tumor-infiltrating dendritic cells (DCs), which produced interleukin 12 (IL-12). These DCs did not bind anti-PD-1 but produced IL-12 upon sensing interferon γ (IFN-γ) that was released from neighboring T cells. In turn, DC-derived IL-12 stimulated antitumor T cell immunity. These findings suggest that full-fledged activation of antitumor T cells by anti-PD-1 is not direct, but rather involves T cell:DC crosstalk and is licensed by IFN-γ and IL-12. Furthermore, we found that activating the non-canonical NF-κB transcription factor pathway amplified IL-12-producing DCs and sensitized tumors to anti-PD-1 treatment, suggesting a therapeutic strategy to improve responses to checkpoint blockade.
            • Record: found
            • Abstract: found
            • Article: not found

            Immunogenic death of colon cancer cells treated with oxaliplatin.

            Both the pre-apoptotic exposure of calreticulin (CRT) and the post-apoptotic release of high-mobility group box 1 protein (HMGB1) are required for immunogenic cell death elicited by anthracyclins. Here, we show that both oxaliplatin (OXP) and cisplatin (CDDP) were equally efficient in triggering HMGB1 release. However, OXP, but not CDDP, stimulates pre-apoptotic CRT exposure in a series of murine and human colon cancer cell lines. Subcutaneous injection of OXP-treated colorectal cancer (CRC), CT26, cells induced an anticancer immune response that was reduced by short interfering RNA-mediated depletion of CRT or HMGB1. In contrast, CDDP-treated CT26 cells failed to induce anticancer immunity, unless recombinant CRT protein was absorbed into the cells. CT26 tumors implanted in immunocompetent mice responded to OXP treatment in vivo, and this therapeutic response was lost when CRT exposure by CT26 cells was inhibited or when CT26 cells were implanted in immunodeficient mice. The knockout of toll-like receptor 4 (TLR4), the receptor for HMGB1, also resulted in a deficient immune response against OXP-treated CT26 cells. In patients with advanced (stage IV, Duke D) CRC, who received an OXP-based chemotherapeutic regimen, the loss-of-function allele of TLR4 (Asp299Gly in linkage disequilibrium with Thr399Ile, reducing its affinity for HMGB1) was as prevalent as in the general population. However, patients carrying the TLR4 loss-of-function allele exhibited reduced progression-free and overall survival, as compared with patients carrying the normal TLR4 allele. In conclusion, OXP induces immunogenic death of CRC cells, and this effect determines its therapeutic efficacy in CRC patients.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts

              Abstract Chimeric antigen receptor (CAR) T cell therapy, together with checkpoint inhibition, has been celebrated as a breakthrough technology due to the substantial benefit observed in clinical trials with patients suffering from relapsed or refractory B‐cell malignancies. In this review, we provide a comprehensive overview of the clinical trials performed so far worldwide and analyze parameters such as targeted antigen and indication, CAR molecular design, CAR T cell manufacturing, anti‐tumor activities, and related toxicities. More than 200 CAR T cell clinical trials have been initiated so far, most of which aim to treat lymphoma or leukemia patients using CD19‐specific CARs. An increasing number of studies address solid tumors as well. Notably, not all clinical trials conducted so far have shown promising results. Indeed, in a few patients CAR T cell therapy resulted in severe adverse events with fatal outcome. Of note, less than 10% of the ongoing CAR T cell clinical trials are performed in Europe. Taking lead from our analysis, we discuss the problems and general hurdles preventing efficient clinical development of CAR T cells as well as opportunities, with a special focus on the European stage.

                Author and article information

                Journal
                Journal of Controlled Release
                Journal of Controlled Release
                Elsevier BV
                01683659
                August 2024
                August 2024
                : 372
                : 362-371
                Article
                10.1016/j.jconrel.2024.06.041
                38909698
                c0376519-204c-453c-af1c-999a829cbb0e
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/legal/tdmrep-license

                http://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article

                Related Documents Log