41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reduced Satellite Cell Numbers and Myogenic Capacity in Aging Can Be Alleviated by Endurance Exercise

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Muscle regeneration depends on satellite cells, myogenic stem cells that reside on the myofiber surface. Reduced numbers and/or decreased myogenic aptitude of these cells may impede proper maintenance and contribute to the age-associated decline in muscle mass and repair capacity. Endurance exercise was shown to improve muscle performance; however, the direct impact on satellite cells in aging was not yet thoroughly determined. Here, we focused on characterizing the effect of moderate-intensity endurance exercise on satellite cell, as possible means to attenuate adverse effects of aging. Young and old rats of both genders underwent 13 weeks of treadmill-running or remained sedentary.

          Methodology

          Gastrocnemius muscles were assessed for the effect of age, gender and exercise on satellite-cell numbers and myogenic capacity. Satellite cells were identified in freshly isolated myofibers based on Pax7 immunostaining (i.e., ex-vivo). The capacity of individual myofiber-associated cells to produce myogenic progeny was determined in clonal assays (in-vitro). We show an age-associated decrease in satellite-cell numbers and in the percent of myogenic clones in old sedentary rats. Upon exercise, there was an increase in myofibers that contain higher numbers of satellite cells in both young and old rats, and an increase in the percent of myogenic clones derived from old rats. Changes at the satellite cell level in old rats were accompanied with positive effects on the lean-to-fat Gast muscle composition and on spontaneous locomotion levels. The significance of these data is that they suggest that the endurance exercise-mediated boost in both satellite numbers and myogenic properties may improve myofiber maintenance in aging.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Notch-mediated restoration of regenerative potential to aged muscle.

          A hallmark of aging is diminished regenerative potential of tissues, but the mechanism of this decline is unknown. Analysis of injured muscle revealed that, with age, resident precursor cells (satellite cells) had a markedly impaired propensity to proliferate and to produce myoblasts necessary for muscle regeneration. This was due to insufficient up-regulation of the Notch ligand Delta and, thus, diminished activation of Notch in aged, regenerating muscle. Inhibition of Notch impaired regeneration of young muscle, whereas forced activation of Notch restored regenerative potential to old muscle. Thus, Notch signaling is a key determinant of muscle regenerative potential that declines with age.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Myogenic satellite cells: physiology to molecular biology.

            Adult skeletal muscle has a remarkable ability to regenerate following myotrauma. Because adult myofibers are terminally differentiated, the regeneration of skeletal muscle is largely dependent on a small population of resident cells termed satellite cells. Although this population of cells was identified 40 years ago, little is known regarding the molecular phenotype or regulation of the satellite cell. The use of cell culture techniques and transgenic animal models has improved our understanding of this unique cell population; however, the capacity and potential of these cells remain ill-defined. This review will highlight the origin and unique markers of the satellite cell population, the regulation by growth factors, and the response to physiological and pathological stimuli. We conclude by highlighting the potential therapeutic uses of satellite cells and identifying future research goals for the study of satellite cell biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasticity of adult stem cells.

              Recent years have seen much excitement over the possibility that adult mammalian stem cells may be capable of differentiating across tissue lineage boundaries, and as such may represent novel, accessible, and very versatile effectors of therapeutic tissue regeneration. Yet studies proposing such "plasticity" of adult somatic stem cells remain controversial, and in general, existing evidence suggests that in vivo such unexpected transformations are exceedingly rare and in some cases can be accounted for by equally unexpected alternative explanations.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                12 October 2010
                : 5
                : 10
                : e13307
                Affiliations
                [1 ]Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
                [2 ]Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington, United States of America
                McMaster University, Canada
                Author notes

                Conceived and designed the experiments: GS. Performed the experiments: GS GR. Analyzed the data: GS GR. Wrote the paper: GS ZYR DB.

                Article
                10-PONE-RA-19901R1
                10.1371/journal.pone.0013307
                2953499
                20967266
                c0431fbc-7886-4d17-a79a-bc4f70a4deee
                Shefer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 16 June 2010
                : 29 August 2010
                Page count
                Pages: 11
                Categories
                Research Article
                Developmental Biology/Aging
                Developmental Biology/Stem Cells
                Physiology/Muscle and Connective Tissue

                Uncategorized
                Uncategorized

                Comments

                Comment on this article