0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular basis of ALK1-mediated signalling by BMP9/BMP10 and their prodomain-bound forms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Activin receptor-like kinase 1 (ALK1)-mediated endothelial cell signalling in response to bone morphogenetic protein 9 (BMP9) and BMP10 is of significant importance in cardiovascular disease and cancer. However, detailed molecular mechanisms of ALK1-mediated signalling remain unclear. Here, we report crystal structures of the BMP10:ALK1 complex at 2.3 Å and the prodomain-bound BMP9:ALK1 complex at 3.3 Å. Structural analyses reveal a tripartite recognition mechanism that defines BMP9 and BMP10 specificity for ALK1, and predict that crossveinless 2 is not an inhibitor of BMP9, which is confirmed by experimental evidence. Introduction of BMP10-specific residues into BMP9 yields BMP10-like ligands with diminished signalling activity in C2C12 cells, validating the tripartite mechanism. The loss of osteogenic signalling in C2C12 does not translate into non-osteogenic activity in vivo and BMP10 also induces bone-formation. Collectively, these data provide insight into ALK1-mediated BMP9 and BMP10 signalling, facilitating therapeutic targeting of this important pathway.

          Abstract

          The molecular basis of activin receptor-like kinase 1 (ALK1)-mediated endothelial bone morphogenetic protein (BMP) signalling is not fully understood. Here, the authors present crystal structures of the BMP10:ALK1 and prodomain-bound BMP9:ALK1 complexes, providing mechanistic insights into ALK1 signalling specificity.

          Related collections

          Most cited references 31

          • Record: found
          • Abstract: found
          • Article: not found

          Latent TGF-β structure and activation.

          Transforming growth factor (TGF)-β is stored in the extracellular matrix as a latent complex with its prodomain. Activation of TGF-β1 requires the binding of α(v) integrin to an RGD sequence in the prodomain and exertion of force on this domain, which is held in the extracellular matrix by latent TGF-β binding proteins. Crystals of dimeric porcine proTGF-β1 reveal a ring-shaped complex, a novel fold for the prodomain, and show how the prodomain shields the growth factor from recognition by receptors and alters its conformation. Complex formation between α(v)β(6) integrin and the prodomain is insufficient for TGF-β1 release. Force-dependent activation requires unfastening of a 'straitjacket' that encircles each growth-factor monomer at a position that can be locked by a disulphide bond. Sequences of all 33 TGF-β family members indicate a similar prodomain fold. The structure provides insights into the regulation of a family of growth and differentiation factors of fundamental importance in morphogenesis and homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells.

            ALK1 is an endothelial-specific type I receptor of the TGFbeta receptor family whose heterozygous mutations cause hereditary hemorrhagic telangiectasia type 2. Although TGFbeta1 and TGFbeta3 have been shown to bind ALK1 under specific experimental conditions, they may not represent the physiological ligands for this receptor. In the present study, we demonstrate that BMP9 induces the phosphorylation of Smad1/5/8 in microvascular endothelial cells, and this phosphorylation lasts over a period of 24 hours. BMP9 also activates the ID1 promoter-derived BMP response element (BRE) in a dose-dependent manner (EC50 = 45 +/- 27 pg/mL), and this activation is abolished by silencing ALK1 expression or addition of ALK1 extracellular domain. Overexpression of endoglin increases the BMP9 response, whereas silencing of both BMPRII and ActRIIA expressions completely abolishes it. BMP10, which is structurally close to BMP9, is also a potent ALK1 ligand. Finally, we demonstrate that BMP9 and BMP10 potently inhibit endothelial cell migration and growth, and stimulate endothelial expression of a panel of genes that was previously reported to be activated by the constitutively active form of ALK1. Taken together, our results suggest that BMP9 and BMP10 are two specific ALK1 ligands that may physiologically trigger the effects of ALK1 on angiogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery.

              Efficacious bone regeneration could revolutionize the clinical management of bone and musculoskeletal disorders. Although several bone morphogenetic proteins (BMPs) (mostly BMP-2 and BMP-7) have been shown to induce bone formation, it is unclear whether the currently used BMPs represent the most osteogenic ones. Until recently, comprehensive analysis of osteogenic activity of all BMPs has been hampered by the fact that recombinant proteins are either not biologically active or not available for all BMPs. In this study, we used recombinant adenoviruses expressing the 14 types of BMPs (AdBMPs), and demonstrated that, in addition to currently used BMP-2 and BMP-7, BMP-6 and BMP-9 effectively induced orthotopic ossification when either AdBMP-transduced osteoblast progenitors or the viral vectors were injected into the quadriceps of athymic mice. Radiographic and histological evaluation demonstrated that BMP-6 and BMP-9 induced the most robust and mature ossification at multiple time points. BMP-3, a negative regulator of bone formation, was shown to effectively inhibit orthotopic ossification induced by BMP-2, BMP-6, and BMP-7. However, BMP-3 exerted no inhibitory effect on BMP-9-induced bone formation, suggesting that BMP-9 may transduce osteogenic signaling differently. Our findings suggest that BMP-6 and BMP-9 may represent more effective osteogenic factors for bone regeneration.
                Bookmark

                Author and article information

                Contributors
                wl225@cam.ac.uk
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                1 April 2020
                1 April 2020
                2020
                : 11
                Affiliations
                [1 ]ISNI 0000000121885934, GRID grid.5335.0, The Department of Medicine, , University of Cambridge School of Clinical Medicine, ; Cambridge, CB2 0QQ UK
                [2 ]ISNI 0000 0001 0694 2777, GRID grid.418195.0, RxCelerate Ltd, Babraham Research Campus, ; Cambridge, CB22 3AT UK
                [3 ]ISNI 0000 0004 0605 769X, GRID grid.42475.30, MRC Laboratory of Molecular Biology, ; Francis Crick Avenue, Cambridge, CB2 0QH UK
                Article
                15425
                10.1038/s41467-020-15425-3
                7113306
                32238803
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Funding
                Funded by: FundRef https://doi.org/10.13039/501100000274, British Heart Foundation (BHF);
                Award ID: PG/12/54/29734
                Award ID: PG/17/1/32532
                Award ID: PG/15/39/31519
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Comments

                Comment on this article