33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Insights into the human oral microbiome

      , ,
      Archives of Microbiology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Defining the healthy "core microbiome" of oral microbial communities

          Background Most studies examining the commensal human oral microbiome are focused on disease or are limited in methodology. In order to diagnose and treat diseases at an early and reversible stage an in-depth definition of health is indispensible. The aim of this study therefore was to define the healthy oral microbiome using recent advances in sequencing technology (454 pyrosequencing). Results We sampled and sequenced microbiomes from several intraoral niches (dental surfaces, cheek, hard palate, tongue and saliva) in three healthy individuals. Within an individual oral cavity, we found over 3600 unique sequences, over 500 different OTUs or "species-level" phylotypes (sequences that clustered at 3% genetic difference) and 88 - 104 higher taxa (genus or more inclusive taxon). The predominant taxa belonged to Firmicutes (genus Streptococcus, family Veillonellaceae, genus Granulicatella), Proteobacteria (genus Neisseria, Haemophilus), Actinobacteria (genus Corynebacterium, Rothia, Actinomyces), Bacteroidetes (genus Prevotella, Capnocytophaga, Porphyromonas) and Fusobacteria (genus Fusobacterium). Each individual sample harboured on average 266 "species-level" phylotypes (SD 67; range 123 - 326) with cheek samples being the least diverse and the dental samples from approximal surfaces showing the highest diversity. Principal component analysis discriminated the profiles of the samples originating from shedding surfaces (mucosa of tongue, cheek and palate) from the samples that were obtained from solid surfaces (teeth). There was a large overlap in the higher taxa, "species-level" phylotypes and unique sequences among the three microbiomes: 84% of the higher taxa, 75% of the OTUs and 65% of the unique sequences were present in at least two of the three microbiomes. The three individuals shared 1660 of 6315 unique sequences. These 1660 sequences (the "core microbiome") contributed 66% of the reads. The overlapping OTUs contributed to 94% of the reads, while nearly all reads (99.8%) belonged to the shared higher taxa. Conclusions We obtained the first insight into the diversity and uniqueness of individual oral microbiomes at a resolution of next-generation sequencing. We showed that a major proportion of bacterial sequences of unrelated healthy individuals is identical, supporting the concept of a core microbiome at health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Beyond the Venn diagram: the hunt for a core microbiome.

            Discovering a core microbiome is important for understanding the stable, consistent components across complex microbial assemblages. A core is typically defined as the suite of members shared among microbial consortia from similar habitats, and is represented by the overlapping areas of circles in Venn diagrams, in which each circle contains the membership of the sample or habitats being compared. Ecological insight into core microbiomes can be enriched by 'omics approaches that assess gene expression, thereby extending the concept of the core beyond taxonomically defined membership to community function and behaviour. Parameters defined by traditional ecology theory, such as composition, phylogeny, persistence and connectivity, will also create a more complex portrait of the core microbiome and advance understanding of the role of key microorganisms and functions within and across ecosystems. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacterial diversity in the oral cavity of 10 healthy individuals.

              The composition of the oral microbiota from 10 individuals with healthy oral tissues was determined using culture-independent techniques. From each individual, 26 specimens, each from different oral sites at a single point in time, were collected and pooled. An 11th pool was constructed using portions of the subgingival specimens from all 10 individuals. The 16S ribosomal RNA gene was amplified using broad-range bacterial primers, and clone libraries from the individual and subgingival pools were constructed. From a total of 11,368 high-quality, nonchimeric, near full-length sequences, 247 species-level phylotypes (using a 99% sequence identity threshold) and 9 bacterial phyla were identified. At least 15 bacterial genera were conserved among all 10 individuals, with significant interindividual differences at the species and strain level. Comparisons of these oral bacterial sequences with near full-length sequences found previously in the large intestines and feces of other healthy individuals suggest that the mouth and intestinal tract harbor distinct sets of bacteria. Co-occurrence analysis showed significant segregation of taxa when community membership was examined at the level of genus, but not at the level of species, suggesting that ecologically significant, competitive interactions are more apparent at a broader taxonomic level than species. This study is one of the more comprehensive, high-resolution analyses of bacterial diversity within the healthy human mouth to date, and highlights the value of tools from macroecology for enhancing our understanding of bacterial ecology in human health.
                Bookmark

                Author and article information

                Journal
                Archives of Microbiology
                Arch Microbiol
                Springer Nature
                0302-8933
                1432-072X
                May 2018
                March 23 2018
                May 2018
                : 200
                : 4
                : 525-540
                Article
                10.1007/s00203-018-1505-3
                29572583
                c055609b-ad84-4529-b502-fe1a00729b70
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article