109
views
0
recommends
+1 Recommend
0 collections
    20
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Functions of Paracrine PDGF Signaling in the Proangiogenic Tumor Stroma Revealed by Pharmacological Targeting

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Important support functions, including promotion of tumor growth, angiogenesis, and invasion, have been attributed to the different cell types populating the tumor stroma, i.e., endothelial cells, cancer-associated fibroblasts, pericytes, and infiltrating inflammatory cells. Fibroblasts have long been recognized inside carcinomas and are increasingly implicated as functional participants. The stroma is prominent in cervical carcinoma, and distinguishable from nonmalignant tissue, suggestive of altered (tumor-promoting) functions. We postulated that pharmacological targeting of putative stromal support functions, in particular those of cancer-associated fibroblasts, could have therapeutic utility, and sought to assess the possibility in a pre-clinical setting.

          Methods and Findings

          We used a genetically engineered mouse model of cervical carcinogenesis to investigate platelet-derived growth factor (PDGF) receptor signaling in cancer-associated fibroblasts and pericytes. Pharmacological blockade of PDGF receptor signaling with the clinically approved kinase inhibitor imatinib slowed progression of premalignant cervical lesions in this model, and impaired the growth of preexisting invasive carcinomas. Inhibition of stromal PDGF receptors reduced proliferation and angiogenesis in cervical lesions through a mechanism involving suppression of expression of the angiogenic factor fibroblast growth factor 2 (FGF-2) and the epithelial cell growth factor FGF-7 by cancer-associated fibroblasts. Treatment with neutralizing antibodies to the PDGF receptors recapitulated these effects. A ligand trap for the FGFs impaired the angiogenic phenotype similarly to imatinib. Thus PDGF ligands expressed by cancerous epithelia evidently stimulate PDGFR-expressing stroma to up-regulate FGFs, promoting angiogenesis and epithelial proliferation, elements of a multicellular signaling network that elicits functional capabilities in the tumor microenvironment.

          Conclusions

          This study illustrates the therapeutic benefits in a mouse model of human cervical cancer of mechanism-based targeting of the stroma, in particular cancer-associated fibroblasts. Drugs aimed at stromal fibroblast signals and effector functions may prove complementary to conventional treatments targeting the overt cancer cells for a range of solid tumors, possibly including cervical carcinoma, the second most common lethal malignancy in women worldwide, for which management remains poor.

          Abstract

          Douglas Hanahan and colleagues investigate a paracrine regulatory circuit centered upon PDGF receptor signaling in cancer-associated fibroblasts and pericytes of a mouse model of cervical carcinogenesis.

          Editors' Summary

          Background.

          Cancers—disorganized, life-threatening masses of cells—develop when cells acquire genetic changes that allow them to divide uncontrollably and to move into (invade) other tissues. Interactions with ostensibly normal cells in the tissue surrounding the tumor (the stroma) support the growth of these abnormal cells. The stroma contains endothelial cells and pericytes (which line the inside and coat the outside, respectively, of blood vessels), cancer-associated fibroblasts, and some immune system cells. Together, these cells support angiogenesis (the formation of a blood supply, which feeds the tumor), produce factors that stimulate tumor cell growth, and facilitate tumor cell invasion into surrounding tissues. One type of tumor with a prominent stromal compartment is cervical cancer. Precancerous changes in the epithelial cells lining the cervix (the structure that connects the womb to the vagina) are usually triggered by infection with human papillomavirus. Some of these early lesions, which are known as cervical intraepithelial neoplasias (CINs), develop into invasive cervical cancer, which is treated by surgery followed by chemotherapy or radiotherapy.

          Why Was This Study Done?

          The outlook for women whose cervical cancer is detected early is good but only 15%–30% of women whose cancer has spread out of the cervix survive for five years. If, as researchers believe, the stromal compartment is important in the development and growth (neoplastic progression) of cervical cancer, it might be possible to help these women by specifically targeting the cells in the stroma. However, relatively little is known about the role that the stroma plays in the neoplastic progression of cervical cancer or how it is regulated other than that a protein called platelet-derived growth factor (PDGF), which is made by the tumor cells, might be involved in its formation. In this study, the researchers have used a mouse model of cervical cancer (HPV/E 2 mice) to investigate PDGF signaling in the tumor stroma. HPV/E 2 mice develop CINs before they are three months old; by five months of age, 90% of them have invasive cervical cancer.

          What Did the Researchers Do and Find?

          The researchers report that PDGF was expressed in the cervixes of normal and HPV/E 2 mice, mainly by epithelial cells, and that PDGF receptors (cell-surface proteins that bind PDGF and send a message into the cell that alters the expression of other proteins) were expressed on cells within normal stroma and in fibroblasts and pericytes in the stroma surrounding CINs and tumors (but not on the cancer cells). The expression of PDGF and its receptors increased slightly during tumor progression. Treatment of the HPV/E 2 mice with imatinib, an inhibitor of PDGF signaling, slowed the progression of precancerous lesions, impaired the growth of invasive cancers, and reduced the number of blood vessels formed in the tumors and the coverage of these vessels with pericytes. Other experiments indicate that imatinib had these effects because its inhibition of stromal PDGF receptors suppressed the expression of FGF-7 (a factor that encourages epithelial cell division) and FGF-2 (a proangiogenic factor) by cancer-associated fibroblasts. Finally, as in HPV/E 2 mice, FGF-2 and PDGF receptors were expressed in the stroma of human cervical cancers whereas PDGF was expressed in the cancer cells.

          What Do These Findings Mean?

          These findings suggest that PDGF receptor signaling in the stromal cells associated with cervical tumors in mice has a functional role during tumor progression. More specifically, they suggest that PDGF released by the tumor cells triggers PDGF signaling in the stromal cells, which increases the expression of factors that both directly and indirectly stimulate the growth of the tumor cells. Confirmation of this scheme will require additional experiments in mouse models of cervical cancer and the careful examination of more human material. Importantly, although approaches that work in mice do not always work in people, the current findings suggest that targeted therapeutics that prevent the stromal support of tumor growth (such as inhibitors of PDGF receptor signaling) might provide a complementary approach to conventional treatments that target the cancer cells themselves.

          Additional Information.

          Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050019.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular characterization of the tumor microenvironment in breast cancer.

          Here we describe the comprehensive gene expression profiles of each cell type composing normal breast tissue and in situ and invasive breast carcinomas using serial analysis of gene expression. Based on these data, we determined that extensive gene expression changes occur in all cell types during cancer progression and that a significant fraction of altered genes encode secreted proteins and receptors. Despite the dramatic gene expression changes in all cell types, genetic alterations were detected only in cancer epithelial cells. The CXCL14 and CXCL12 chemokines overexpressed in tumor myoepithelial cells and myofibroblasts, respectively, bind to receptors on epithelial cells and enhance their proliferation, migration, and invasion. Thus, chemokines may play a role in breast tumorigenesis by acting as paracrine factors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genes expressed in human tumor endothelium.

            To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of tissue stroma in cancer cell invasion.

              Maintenance of epithelial tissues needs the stroma. When the epithelium changes, the stroma inevitably follows. In cancer, changes in the stroma drive invasion and metastasis, the hallmarks of malignancy. Stromal changes at the invasion front include the appearance of myofibroblasts, cells sharing characteristics with fibroblasts and smooth muscle cells. The main precursors of myofibroblasts are fibroblasts. The transdifferentiation of fibroblasts into myofibroblasts is modulated by cancer cell-derived cytokines, such as transforming growth factor-beta (TGF-beta). TGF-beta causes cancer progression through paracrine and autocrine effects. Paracrine effects of TGF-beta implicate stimulation of angiogenesis, escape from immunosurveillance and recruitment of myofibroblasts. Autocrine effects of TGF-beta in cancer cells with a functional TGF-beta receptor complex may be caused by a convergence between TGF-beta signalling and beta-catenin or activating Ras mutations. Experimental and clinical observations indicate that myofibroblasts produce pro-invasive signals. Such signals may also be implicated in cancer pain. N-Cadherin and its soluble form act as invasion-promoters. N-Cadherin is expressed in invasive cancer cells and in host cells such as myofibroblasts, neurons, smooth muscle cells, and endothelial cells. N-Cadherin-dependent heterotypic contacts may promote matrix invasion, perineural invasion, muscular invasion, and transendothelial migration; the extracellular, the juxtamembrane and the beta-catenin binding domain of N-cadherin are implicated in positive invasion signalling pathways. A better understanding of stromal contributions to cancer progression will likely increase our awareness of the importance of the combinatorial signals that support and promote growth, dedifferentiation, invasion, and ectopic survival and eventually result in the identification of new therapeutics targeting the stroma. Copyright 2003 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                pmed
                plme
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                January 2008
                29 January 2008
                : 5
                : 1
                : e19
                Affiliations
                [1 ] Department of Biochemistry and Biophysics, Diabetes Center and Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
                [2 ] Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden
                [3 ] Department of Neurosurgery, University of California San Franciso, San Francisco, California, United States of America
                Memorial Sloan-Kettering Cancer Center, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: kristian.pietras@ 123456licr.ki.se (KP); dh@ 123456biochem.ucsf.edu (DH)
                Article
                07-PLME-RA-0582R3 plme-05-01-20
                10.1371/journal.pmed.0050019
                2214790
                18232728
                c0563f0a-57fe-4f27-bb36-13dc17b74f15
                Copyright: © 2008 Pietras et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 May 2007
                : 6 December 2007
                Page count
                Pages: 16
                Categories
                Research Article
                Oncology
                Oncology
                Cancer: Gynecological
                Chemotherapy
                Custom metadata
                Pietras K, Pahler J, Bergers G, Hanahan D (2008) Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med 5(1): e19. doi: 10.1371/journal.pmed.0050019

                Medicine
                Medicine

                Comments

                Comment on this article