12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Formation of Massive Counterrotating Disks in Spiral Galaxies

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present results of numerical simulations of the formation of a massive counterrotating gas disk in a spiral galaxy. Using a hierarchical tree gravity solver combined with a sticky-particle gas dissipation scheme for our simulations, we have investigated three mechanisms: episodic and continuous gas infall, and a merger with a gas-rich dwarf galaxy. We find that both episodic and continuous gas infall work reasonably well and are able to produce a substantial gas counterrotating disk without upsetting the stability of the existing disk drastically, but it is very important for the gas to be well-dispersed in phase-space and not form concentrated clumps prior to its absorption by the disk galaxy. The initial angular momentum of the gas also plays a crucial role in determining the scale length of the counterrotating disk formed and the time it takes to form. The rate of infall, i.e. the mass of gas falling in per unit time, has to be small enough to preclude excessive heating of the preexisting disk. It is much easier in general to produce a smaller counterrotating disk than it is to produce an extensive disk whose scale length is similar to that of the original prograde disk. A gas-rich dwarf merger does not appear to be a viable mechanism to produce a massive counterrotating disk, because only a very small dwarf galaxy can produce a counterrotating disk without increasing the thickness of the existing disk by an order of magnitude, and the time-scale for this process is prohibitively long because it makes it very unlikely that several such mergers can accumulate a massive counterrotating disk over a Hubble time.

          Related collections

          Author and article information

          Journal
          1995-10-09
          Article
          10.1086/177037
          astro-ph/9510053
          c05ec70d-e17c-4930-88f8-01d26743eb73
          History
          Custom metadata
          Accepted by ApJ, 22 pages, uuencoded compressed Postscript. 18 Figures (compressed Postscript) available from anonymous ftp at ftp://bessel.mps.ohio-state.edu/pub/thakar/cr1/figs.ps.Z A complete (text+figs) compressed PostScript preprint is also available at ftp://bessel.mps.ohio-state.edu/pub/thakar/cr1/pp.ps.gz
          astro-ph

          General astrophysics
          General astrophysics

          Comments

          Comment on this article