Blog
About

53
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effect of electronic cigarette and tobacco smoke exposure on COPD bronchial epithelial cell inflammatory responses

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Electronic cigarettes (e-cigs) are used to help smoking cessation. However, these devices contain harmful chemicals, and there are safety concerns. We have investigated the effects of e-cigs on the inflammatory response and viability of COPD bronchial epithelial cells (BECs).

          Methods

          BECs from COPD patients and controls were exposed to e-cig vapor extract (ECVE) and the levels of interleukin (IL)-6, C-X-C motif ligand 8 (CXCL8), and lactate dehydrogenase release were measured. We also examined the effect of ECVE pretreatment on polyinosinic:polycytidylic acid (poly I:C)-stimulated cytokine release from BECs. Parallel experiments using Calu-3 cells were performed. Comparisons were made with cigarette smoke extract (CSE).

          Results

          ECVE and CSE caused an increase in the release of IL-6 and CXCL8 from Calu-3 cells. ECVE only caused toxicity in BECs and Calu-3 cells. Furthermore, ECVE and CSE dampened poly I:C-stimulated C-X-C motif ligand 10 release from both cell culture models, reaching statistical significance for CSE at an optical density of 0.3.

          Conclusion

          ECVE caused toxicity and reduced the antiviral response to poly I:C. This raises concerns over the safety of e-cig use.

          Related collections

          Most cited references 34

          • Record: found
          • Abstract: found
          • Article: not found

          Respiratory viruses in exacerbations of chronic obstructive pulmonary disease requiring hospitalisation: a case-control study.

          Acute exacerbations of chronic obstructive pulmonary disease (AE-COPD) are a common cause of hospital admission. Many exacerbations are believed to be due to upper and/or lower respiratory tract viral infections, but the incidence of these infections in patients with COPD is still undetermined. Respiratory syncytial virus (RSV), influenza A and B, parainfluenza 3, and picornaviruses were detected by nested reverse transcription polymerase chain reaction (RT-PCR) in upper (nasal lavage) and lower respiratory tract specimens (induced sputum). In a 2:1 case-control set up, 85 hospitalised patients with AE-COPD and 42 patients with stable COPD admitted for other medical reasons were studied. Respiratory viruses were found more often in sputum and nasal lavage of patients with AE-COPD (48/85, 56%) than in patients with stable COPD (8/42, 19%, p<0.01). The most common viruses were picornaviruses (21/59, 36%), influenza A (15/59, 25%), and RSV (13/59, 22%). When specimens were analysed separately, this difference was seen in induced sputum (exacerbation 40/85 (47%) v stable 4/42 (10%), p<0.01) but was not significant in nasal lavage (exacerbation 26/85 (31%) v stable 7/42 (17%), p=0.14). In patients with AE-COPD, fever was more frequent in those in whom viruses were detected (12/48, 25%) than in those in whom viruses were not detected (2/37, 5%, p=0.03). Viral respiratory pathogens are found more often in respiratory specimens of hospitalised patients with AE-COPD than in control patients. Induced sputum detects respiratory viruses more frequently than nasal lavage in these patients. These data indicate that nasal lavage probably has no additional diagnostic value to induced sputum in cross-sectional studies on hospitalised patients with AE-COPD and that the role of viral infection in these patients is still underestimated.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Hidden formaldehyde in e-cigarette aerosols.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria.

              Electronic (e)-cigarette use is rapidly rising, with 20 % of Americans ages 25-44 now using these drug delivery devices. E-cigarette users expose their airways, cells of host defense, and colonizing bacteria to e-cigarette vapor (EV). Here, we report that exposure of human epithelial cells at the air-liquid interface to fresh EV (vaped from an e-cigarette device) resulted in dose-dependent cell death. After exposure to EV, cells of host defense-epithelial cells, alveolar macrophages, and neutrophils-had reduced antimicrobial activity against Staphylococcus aureus (SA). Mouse inhalation of EV for 1 h daily for 4 weeks led to alterations in inflammatory markers within the airways and elevation of an acute phase reactant in serum. Upon exposure to e-cigarette vapor extract (EVE), airway colonizer SA had increased biofilm formation, adherence and invasion of epithelial cells, resistance to human antimicrobial peptide LL-37, and up-regulation of virulence genes. EVE-exposed SA were more virulent in a mouse model of pneumonia. These data suggest that e-cigarettes may be toxic to airway cells, suppress host defenses, and promote inflammation over time, while also promoting virulence of colonizing bacteria.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2018
                23 March 2018
                : 13
                : 989-1000
                Affiliations
                [1 ]Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK
                [2 ]Medicines Evaluation Unit, University Hospital of South Manchester, Manchester, UK
                Author notes
                Correspondence: Dave Singh, Medicines Evaluation Unit, The Langley Building, Southmoor Road, Wythenshawe, Manchester, M23 9LT, UK, Tel +44 161 946 4050, Email dsingh@ 123456meu.org.uk
                Article
                copd-13-989
                10.2147/COPD.S157728
                5870631
                © 2018 Higham et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Respiratory medicine

                liquid interface, cigarette smoke, copd, air, e-cigs, epithelial cells

                Comments

                Comment on this article