4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Antinociceptive effect of the hydroethanolic leaf extract of Calotropis procera (Ait) R. Br. (Apocynaceae): Possible involvement of glutamatergic, cytokines, opioidergic and adenosinergic pathways

      , , , , , ,
      Journal of Ethnopharmacology
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          Cytokines, inflammation, and pain.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nociceptors are interleukin-1beta sensors.

            A cardinal feature of inflammation is heightened pain sensitivity at the site of the inflamed tissue. This results from the local release by immune and injured cells of nociceptor sensitizers, including prostaglandin E(2), bradykinin, and nerve growth factor, that reduce the threshold and increase the excitability of the peripheral terminals of nociceptors so that they now respond to innocuous stimuli: the phenomenon of peripheral sensitization. We show here that the proinflammatory cytokine interleukin-1beta (IL-1beta), in addition to producing inflammation and inducing synthesis of several nociceptor sensitizers, also rapidly and directly activates nociceptors to generate action potentials and induce pain hypersensitivity. IL-1beta acts in a p38 mitogen-activated protein kinase (p38 MAP kinase)-dependent manner, to increase the excitability of nociceptors by relieving resting slow inactivation of tetrodotoxin-resistant voltage-gated sodium channels and also enhances persistent TTX-resistant current near threshold. By acting as an IL-1beta sensor, nociceptors can directly signal the presence of ongoing tissue inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats

              A method for assessing pain and analgesia in rats and cats is described. The procedure involves subcutaneous injection of dilute formalin into the forepaw, after which the animal's responses are rated according to objective behavioral criteria. The formalin test is a statistically valid technique which has two advantages over other pain tests: (1) little or no restraint is necessary, permitting unhindered observation of the complete range of behavioral responses; and (2) the pain stimulus is continuous rather than transient, thus bearing greater resemblance to most clinical pain. The analgesic effects of morphine, meperidine, and stimulation of the periaqueductal grey matter are evaluated using this test.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Ethnopharmacology
                Journal of Ethnopharmacology
                Elsevier BV
                03788741
                October 2021
                October 2021
                : 278
                : 114261
                Article
                10.1016/j.jep.2021.114261
                c06dadf1-2629-43da-86d7-00bb723b23c0
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article