17
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Foraging distances in six species of solitary bees with body lengths of 6 to 15 mm, inferred from individual tagging, suggest 150 m-rule-of-thumb for flower strip distances

      , ,
      Journal of Hymenoptera Research
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bees require suitably close foraging and nesting sites to minimize travel time and energy expenditure for brood provisioning. Knowing foraging distances in persistent (‘healthy’) populations is therefore crucial for assessing harmful levels of habitat fragmentation. For small bees, such distances are poorly known because of the difficulty of individual tagging and problems with mark-recapture approaches. Using apiarist’s number tags and colour codes, we marked 2689 males and females of four oligolectic and two polylectic species of Osmiini bees (Megachilidae, genera Chelostoma, Heriades, Hoplitis, Osmia) with body lengths of 6 to 15 mm. The work was carried out in 21 ha-large urban garden that harbours at least 106 species of wild bees. Based on 450 re-sightings, mean female flight distances ranged from 73 to 121 m and male distances from 59 to 100 m. These foraging distances suggest that as a rule of thumb, flower strips and nesting sites for supporting small solitary bees should be no further than 150 m apart.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Bee foraging ranges and their relationship to body size.

          Bees are the most important pollinator taxon; therefore, understanding the scale at which they forage has important ecological implications and conservation applications. The foraging ranges for most bee species are unknown. Foraging distance information is critical for understanding the scale at which bee populations respond to the landscape, assessing the role of bee pollinators in affecting plant population structure, planning conservation strategies for plants, and designing bee habitat refugia that maintain pollination function for wild and crop plants. We used data from 96 records of 62 bee species to determine whether body size predicts foraging distance. We regressed maximum and typical foraging distances on body size and found highly significant and explanatory nonlinear relationships. We used a second data set to: (1) compare observed reports of foraging distance to the distances predicted by our regression equations and (2) assess the biases inherent to the different techniques that have been used to assess foraging distance. The equations we present can be used to predict foraging distances for many bee species, based on a simple measurement of body size.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Foraging ranges of solitary bees

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bumblebee flight distances in relation to the forage landscape.

              1. Foraging range is a key aspect of the ecology of 'central place foragers'. Estimating how far bees fly under different circumstances is essential for predicting colony success, and for estimating bee-mediated gene flow between plant populations. It is likely to be strongly influenced by forage distribution, something that is hard to quantify in all but the simplest landscapes; and theories of foraging distance tend to assume a homogeneous forage distribution. 2. We quantified the distribution of bumblebee Bombus terrestris L. foragers away from experimentally positioned colonies, in an agricultural landscape, using two methods. We mass-marked foragers as they left the colony, and analysed pollen from foragers returning to the colonies. The data were set within the context of the 'forage landscape': a map of the spatial distribution of forage as determined from remote-sensed data. To our knowledge, this is the first time that empirical data on foraging distances and forage availability, at this resolution and scale, have been collected and combined for bumblebees. 3. The bees foraged at least 1.5 km from their colonies, and the proportion of foragers flying to one field declined, approximately linearly, with radial distance. In this landscape there was great variation in forage availability within 500 m of colonies but little variation beyond 1 km, regardless of colony location. 4. The scale of B. terrestris foraging was large enough to buffer against effects of forage patch and flowering crop heterogeneity, but bee species with shorter foraging ranges may experience highly variable colony success according to location.
                Bookmark

                Author and article information

                Journal
                Journal of Hymenoptera Research
                JHR
                Pensoft Publishers
                1314-2607
                1070-9428
                June 29 2020
                June 29 2020
                : 77
                : 105-117
                Article
                10.3897/jhr.77.51182
                c06dbe03-b266-4b62-ae93-dd42c32638d9
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article