3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Magic angle spinning NMR spectroscopic metabolic profiling of gall bladder tissues for differentiating malignant from benign disease

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          HMDB: a knowledgebase for the human metabolome

          The Human Metabolome Database (HMDB, http://www.hmdb.ca) is a richly annotated resource that is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. Since its first release in 2007, the HMDB has been used to facilitate the research for nearly 100 published studies in metabolomics, clinical biochemistry and systems biology. The most recent release of HMDB (version 2.0) has been significantly expanded and enhanced over the previous release (version 1.0). In particular, the number of fully annotated metabolite entries has grown from 2180 to more than 6800 (a 300% increase), while the number of metabolites with biofluid or tissue concentration data has grown by a factor of five (from 883 to 4413). Similarly, the number of purified compounds with reference to NMR, LC-MS and GC-MS spectra has more than doubled (from 380 to more than 790 compounds). In addition to this significant expansion in database size, many new database searching tools and new data content has been added or enhanced. These include better algorithms for spectral searching and matching, more powerful chemical substructure searches, faster text searching software, as well as dedicated pathway searching tools and customized, clickable metabolic maps. Changes to the user-interface have also been implemented to accommodate future expansion and to make database navigation much easier. These improvements should make the HMDB much more useful to a much wider community of users.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Metabolic profiles of cancer cells.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolomics: current technologies and future trends.

              The ability to sequence whole genomes has taught us that our knowledge with respect to gene function is rather limited with typically 30-40% of open reading frames having no known function. Thus, within the life sciences there is a need for determination of the biological function of these so-called orphan genes, some of which may be molecular targets for therapeutic intervention. The search for specific mRNA, proteins, or metabolites that can serve as diagnostic markers has also increased, as has the fact that these biomarkers may be useful in following and predicting disease progression or response to therapy. Functional analyses have become increasingly popular. They include investigations at the level of gene expression (transcriptomics), protein translation (proteomics) and more recently the metabolite network (metabolomics). This article provides an overview of metabolomics and discusses its complementary role with transcriptomics and proteomics, and within system biology. It highlights how metabolome analyses are conducted and how the highly complex data that are generated are analysed. Non-invasive footprinting analysis is also discussed as this has many applications to in vitro cell systems. Finally, for studying biotic or abiotic stresses on animals, plants or microbes, we believe that metabolomics could very easily be applied to large populations, because this approach tends to be of higher throughput and generally lower cost than transcriptomics and proteomics, whilst also providing indications of which area of metabolism may be affected by external perturbation.
                Bookmark

                Author and article information

                Journal
                Metabolomics
                Metabolomics
                Springer Nature
                1573-3882
                1573-3890
                February 2013
                May 26 2012
                : 9
                : 1
                : 101-118
                Article
                10.1007/s11306-012-0431-7
                c070f5ae-1234-4a37-a954-6dfed0a5d832
                © 2012
                History

                Comments

                Comment on this article