37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sickle cell disease

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sickle cell disease (SCD) is a group of inherited disorders caused by mutations in HBB, which encodes haemoglobin subunit β. The incidence is estimated to be between 300,000 and 400,000 neonates globally each year, the majority in sub-Saharan Africa. Haemoglobin molecules that include mutant sickle β-globin subunits can polymerize; erythrocytes that contain mostly haemoglobin polymers assume a sickled form and are prone to haemolysis. Other pathophysiological mechanisms that contribute to the SCD phenotype are vaso-occlusion and activation of the immune system. SCD is characterized by a remarkable phenotypic complexity. Common acute complications are acute pain events, acute chest syndrome and stroke; chronic complications (including chronic kidney disease) can damage all organs. Hydroxycarbamide, blood transfusions and haematopoietic stem cell transplantation can reduce the severity of the disease. Early diagnosis is crucial to improve survival, and universal newborn screening programmes have been implemented in some countries but are challenging in low-income, high-burden settings.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: not found
          • Article: not found

          Moyamoya disease and moyamoya syndrome.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells.

            The β-haemoglobinopathies, such as sickle cell disease and β-thalassaemia, are caused by mutations in the β-globin (HBB) gene and affect millions of people worldwide. Ex vivo gene correction in patient-derived haematopoietic stem cells followed by autologous transplantation could be used to cure β-haemoglobinopathies. Here we present a CRISPR/Cas9 gene-editing system that combines Cas9 ribonucleoproteins and adeno-associated viral vector delivery of a homologous donor to achieve homologous recombination at the HBB gene in haematopoietic stem cells. Notably, we devise an enrichment model to purify a population of haematopoietic stem and progenitor cells with more than 90% targeted integration. We also show efficient correction of the Glu6Val mutation responsible for sickle cell disease by using patient-derived stem and progenitor cells that, after differentiation into erythrocytes, express adult β-globin (HbA) messenger RNA, which confirms intact transcriptional regulation of edited HBB alleles. Collectively, these preclinical studies outline a CRISPR-based methodology for targeting haematopoietic stem cells by homologous recombination at the HBB locus to advance the development of next-generation therapies for β-haemoglobinopathies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Causes and outcomes of the acute chest syndrome in sickle cell disease. National Acute Chest Syndrome Study Group.

              The acute chest syndrome is the leading cause of death among patients with sickle cell disease. Since its cause is largely unknown, therapy is supportive. Pilot studies with improved diagnostic techniques suggest that infection and fat embolism are underdiagnosed in patients with the syndrome. In a 30-center study, we analyzed 671 episodes of the acute chest syndrome in 538 patients with sickle cell disease to determine the cause, outcome, and response to therapy. We evaluated a treatment protocol that included matched transfusions, bronchodilators, and bronchoscopy. Samples of blood and respiratory tract secretions were sent to central laboratories for antibody testing, culture, DNA testing, and histopathological analyses. Nearly half the patients were initially admitted for another reason, mainly pain. When the acute chest syndrome was diagnosed, patients had hypoxia, decreasing hemoglobin values, and progressive multilobar pneumonia. The mean length of hospitalization was 10.5 days. Thirteen percent of patients required mechanical ventilation, and 3 percent died. Patients who were 20 or more years of age had a more severe course than those who were younger. Neurologic events occurred in 11 percent of patients, among whom 46 percent had respiratory failure. Treatment with phenotypically matched transfusions improved oxygenation, with a 1 percent rate of alloimmunization. One fifth of the patients who were treated with bronchodilators had clinical improvement. Eighty-one percent of patients who required mechanical ventilation recovered. A specific cause of the acute chest syndrome was identified in 38 percent of all episodes and 70 percent of episodes with complete data. Among the specific causes were pulmonary fat embolism and 27 different infectious pathogens. Eighteen patients died, and the most common causes of death were pulmonary emboli and infectious bronchopneumonia. Infection was a contributing factor in 56 percent of the deaths. Among patients with sickle cell disease, the acute chest syndrome is commonly precipitated by fat embolism and infection, especially community-acquired pneumonia. Among older patients and those with neurologic symptoms, the syndrome often progresses to respiratory failure. Treatment with transfusions and bronchodilators improves oxygenation, and with aggressive treatment, most patients who have respiratory failure recover.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Disease Primers
                Nat. Rev. Dis. Primers
                Springer Nature
                2056-676X
                March 15 2018
                March 15 2018
                : 4
                :
                : 18010
                Article
                10.1038/nrdp.2018.10
                29542687
                c080dd2e-70e9-42c3-ad9d-5069d6355dbd
                © 2018
                History

                Comments

                Comment on this article