13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evidence for Tissue Toxicity in BALB/c Exposed to a Long-Term Treatment with Oxiranes Compared to Meglumine Antimoniate

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leishmaniasis remains a serious public health problem in developing countries without effective control, whether by vaccination or chemotherapy. Part of the failure of leishmaniasis control is due to the lack of new less toxic and more effective drugs able to eliminate both the lesions and the parasite. Oxiranes derived from naphthoquinones now being assayed are promising drugs for the treatment of this group of diseases. The predicted pharmacokinetic properties and toxicological profiles of epoxy- α-lapachone and epoxymethoxy-lawsone have now been compared to those of meglumine antimoniate, and histological changes induced by these drugs in noninfected BALB/c mice tissues are described. Effects of these compounds on liver, kidney, lung, heart, and cerebral tissues of healthy mice were examined. The data presented show that both these oxiranes and meglumine antimoniate induce changes in all BALB/c mice tissues, with the lung, heart, and brain being the most affected. Epoxymethoxy-lawsone was the most toxic to lung tissue, while most severe damage was caused in the heart by epoxy- α-lapachone. Meglumine antimoniate caused mild-to-moderate changes in heart and lung tissues.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Use of Antimony in the Treatment of Leishmaniasis: Current Status and Future Directions

          In the recent past the standard treatment of kala-azar involved the use of pentavalent antimonials Sb(V). Because of progressive rise in treatment failure to Sb(V) was limited its use in the treatment program in the Indian subcontinent. Until now the mechanism of action of Sb(V) is not very clear. Recent studies indicated that both parasite and hosts contribute to the antimony efflux mechanism. Interestingly, antimonials show strong immunostimulatory abilities as evident from the upregulation of transplantation antigens and enhanced T cell stimulating ability of normal antigen presenting cells when treated with Sb(V) in vitro. Recently, it has been shown that some of the peroxovanadium compounds have Sb(V)-resistance modifying ability in experimental infection with Sb(V) resistant Leishmania donovani isolates in murine model. Thus, vanadium compounds may be used in combination with Sb(V) in the treatment of Sb(V) resistance cases of kala-azar.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections.

            Liposomal amphotericin B (AmBisome) is a lipid-associated formulation of the broad-spectrum polyene antifungal agent amphotericin B. It is active against clinically relevant yeasts and moulds, including Candida spp., Aspergillus spp. and filamentous moulds such as Zygomycetes, and is approved for the treatment of invasive fungal infections in many countries worldwide. It was developed to improve the tolerability profile of amphotericin B deoxycholate, which was for many decades considered the gold standard of antifungal treatment, despite being associated with infusion-related events and nephrotoxicity. In well controlled trials, liposomal amphotericin B had similar efficacy to amphotericin B deoxycholate and amphotericin B lipid complex as empirical therapy in adult and paediatric patients with febrile neutropenia. In addition, caspofungin was noninferior to liposomal amphotericin B as empirical therapy in adult patients with febrile neutropenia. For the treatment of confirmed invasive fungal infections, liposomal amphotericin B was more effective than amphotericin B deoxycholate treatment in patients with disseminated histoplasmosis and AIDS, and was noninferior to amphotericin B deoxycholate in patients with acute cryptococcal meningitis and AIDS. In adults, micafungin was shown to be noninferior to liposomal amphotericin B for the treatment of candidaemia and invasive candidiasis. Data from animal studies suggested that higher dosages of liposomal amphotericin B might improve efficacy; however, in the AmBiLoad trial in patients with invasive mould infection, there was no statistical difference in efficacy between the standard dosage of liposomal amphotericin B 3 mg/kg/day and a higher 10 mg/kg/day dosage, although the standard dosage was better tolerated. Despite being associated with fewer infusion-related adverse events and less nephrotoxicity than amphotericin B deoxycholate and amphotericin B lipid complex, liposomal amphotericin B use is still limited to some extent by these adverse events. Both echinocandins were better tolerated than liposomal amphotericin B. The cost of liposomal amphotericin B therapy may also restrict its use, but further pharmacoeconomic studies are required to fully define its cost effectiveness compared with other antifungal agents. Based on comparative data from well controlled trials, extensive clinical experience and its broad spectrum of activity, liposomal amphotericin B remains a first-line option for empirical therapy in patients with febrile neutropenia and in those with disseminated histoplasmosis, and is an option for the treatment of AIDS-associated cryptococcal meningitis, and for invasive Candida spp. or Aspergillus spp. infections. Amphotericin B, a macrocyclic, polyene antifungal agent, is thought to act by binding to ergosterol, the principal sterol in fungal cell membranes and Leishmania cells. This results in a change in membrane permeability, causing metabolic disturbance, leakage of small molecules and, as a consequence, cell death. In vitro and in vivo studies have shown that liposomal amphotericin B remains closely associated with the liposomes in the circulation, thereby reducing the potential for nephrotoxicity and infusion-related toxicity associated with conventional amphotericin B. Amphotericin B shows very good in vitro activity against a broad spectrum of clinically relevant fungal isolates, including most strains of Candida spp. and Aspergillus spp., and other filamentous fungi such as Zygomycetes. Liposomal amphotericin B has proven effective in various animal models of fungal infections, including those for candidiasis, aspergillosis, fusariosis and zygomycosis. Liposomal amphotericin B also shows immunomodulatory effects, although the mechanisms involved are not fully understood, and differ from those of amphotericin B deoxycholate and amphotericin B colloidal dispersion. In adult patients with febrile neutropenia, intravenous liposomal amphotericin B has nonlinear pharmacokinetics, with higher than dose-proportional increases in exposure being consistent with reticuloendothelial saturation and redistribution of amphotericin B in the plasma compartment. Liposomal amphotericin B is rapidly and extensively distributed after single and multiple doses, with steady-state concentrations of amphotericin B attained within 4 days and no clinically relevant accumulation of the drug following multiple doses of 1-7.5 mg/kg/day. In autopsy tissue, the highest concentrations of the drug were found in the liver and spleen, followed by the kidney, lung, myocardium and brain tissue. Elimination of liposomal amphotericin B, like that of amphotericin B deoxycholate, is poorly understood; its route of metabolism is not known and its excretion has not been studied. The terminal elimination half-life is about 7 hours. No dosage adjustment is required based on age or renal impairment. In several randomized, double-blind trials (n = 73-1095) in adult and/or paediatric patients, liposomal amphotericin B was effective as empirical therapy or as treatment for confirmed invasive fungal infections, including invasive candidiasis, candidaemia, invasive mould infection (mainly aspergillosis), histoplasmosis and cryptococcal meningitis. All agents were administered as an intravenous infusion; the typical dosage for liposomal amphotericin B was 3 mg/kg/day. Treatment was generally given for 1-2 weeks. Participants in trials evaluating empirical therapy had neutropenia and a persistent fever despite antibacterial treatment and had received chemotherapy or undergone haematopoietic stem cell transplantation. As empirical therapy in adult and paediatric patients, liposomal amphotericin B appeared to be as effective as amphotericin B deoxycholate (approximately 50% of patients in each group achieved treatment success) or amphotericin B lipid complex (approximately 40% of liposomal amphotericin B recipients experienced treatment success). Of note, in the first trial, results of the statistical test to determine equivalence between treatments were not reported. In the second trial, efficacy was assessed as an 'other' endpoint. In another trial, caspofungin was shown to be noninferior to liposomal amphotericin B, with approximately one-third of patients in each group experiencing treatment success. Liposomal amphotericin B was significantly more effective than amphotericin B deoxycholate for the treatment of moderate to severe disseminated histoplasmosis in patients with AIDS, with 88% and 64% of patients, respectively, having a successful response. Liposomal amphotericin B was noninferior to amphotericin B deoxycholate for the treatment of cryptococcal meningitis in terms of mycological success. Micafungin therapy was shown to be noninferior to liposomal amphotericin B for the treatment of adult patients with candidaemia or invasive candidiasis. In a substudy in paediatric patients, which was not powered to determine noninferiority, liposomal amphotericin B was as effective as micafungin for the treatment of candidaemia or invasive candidiasis. In this patient population, within each trial, 90% of adult patients and approximately three-quarters of paediatric patients in both treatment groups experienced a successful response. In patients with invasive mould infection (mainly aspergillosis), there was no difference in efficacy between a higher dosage of liposomal amphotericin B (10 mg/kg/day) and the standard dosage (3 mg/kg/day), with 46% and 50% of patients experiencing a favourable overall response. In well designed clinical trials, liposomal amphotericin B was generally at least as well tolerated as other lipid-associated formulations of amphotericin B and better tolerated than amphotericin B deoxycholate in adult and paediatric patients. Compared with other amphotericin B formulations, liposomal amphotericin B treatment was associated with a lower incidence of infusion-related adverse events and nephrotoxicity. A higher than recommended dosage of liposomal amphotericin B (10 mg/kg/day) was associated with an increased incidence of nephrotoxicity compared with the standard dosage (3 mg/kg/day), although the incidence of infusion-related reactions did not differ between treatment groups. In general, liposomal amphotericin B treatment was not as well tolerated as echinocandin therapy in well designed clinical trials. As empirical therapy or for the treatment of confirmed invasive fungal infections in adult patients, liposomal amphotericin B recipients experienced more infusion-related events and nephrotoxicity than caspofungin or micafungin recipients. There was no difference in the incidence of these adverse events between the liposomal amphotericin B and micafungin groups in a study in paediatric patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence that the high incidence of treatment failures in Indian kala-azar is due to the emergence of antimony-resistant strains of Leishmania donovani.

              The possibility that the high frequency of treatment failures in Indian kala-azar might be due to infection with antimony-resistant strains of Leishmania donovani has not been experimentally addressed. L. donovani isolates were obtained from splenic aspiration smears of 24 patients in Bihar, India, who either did not respond (15) or did respond (9) to 1 or more full courses of treatment with sodium antimony gluconate (SAG). A strong correlation (P<.001) between clinical response and SAG sensitivity in vitro was observed only when strains were assayed as intracellular amastigotes: responsive isolates ED50=2.4+/-2.6, ED90=6.4+/-7.8 microgram SAG/mL; unresponsive isolates ED50=7.4+/-3.7 microgram SAG/mL, ED90=29.1+/-11.1 SAG/mL. No correlation with clinical response was found by use of extracellular promastigotes (ED50=48+/-22 vs. 52+/-29 microgram/mL). The emergence of antimony-resistant L. donovani strains appears to be a cause of treatment failures in India.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2017
                17 July 2017
                : 2017
                : 9840210
                Affiliations
                1Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
                2Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Avenida Brasil 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
                3Laboratório de Ultraestrutura e Biologia Tecidual, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard 28 de Setembro, No. 87, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
                4Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz (Fiocruz), Avenida Brasil 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
                5Instituto de Biologia, Universidade Federal Fluminense, Outeiro São João Batista S/N, 24210-130 Niterói, RJ, Brazil
                6Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Outeiro São João Batista S/N, Centro, 24210-130 Niterói, RJ, Brazil
                7Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
                Author notes
                *Carlos Roberto Alves: calves@ 123456ioc.fiocruz.br

                Academic Editor: Philippe Holzmuller

                Author information
                http://orcid.org/0000-0001-8703-426X
                Article
                10.1155/2017/9840210
                5535747
                c084feae-61ee-4711-b193-893a7b39d7ad
                Copyright © 2017 Luiz Filipe Gonçalves Oliveira et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 March 2017
                : 19 May 2017
                : 1 June 2017
                Funding
                Funded by: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
                Award ID: E-26/111.354/2013
                Award ID: E-26/010.001261/2015
                Categories
                Research Article

                Comments

                Comment on this article