64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Lactobacillus johnsonii Supplementation Attenuates Respiratory Viral Infection via Metabolic Reprogramming and Immune Cell Modulation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Regulation of respiratory mucosal immunity by microbial-derived metabolites has been a proposed mechanism that may provide airway protection. Here we examine the effect of oral Lactobacillus johnsonii-supplementation on metabolic and immune response dynamics during respiratory syncytial virus (RSV) infection. L. johnsonii-supplementation reduced airway Th2 cytokines, dendritic cell function, increased T-regulatory cells, and was associated with a reprogrammed circulating metabolic environment, including docosahexanoic acid (DHA) enrichment. RSV-infected bone-marrow derived dendritic cells (BMDC) from L. johnsonii-supplemented mice had altered cytokine secretion, reduced expression of co-stimulatory molecules, and modified CD4+ T cell cytokines. This was replicated upon co-incubation of wild-type BMDCs with either plasma from L. johnsonii-supplemented mice, or DHA. Finally, airway transfer of BMDCs from L. johnsonii-supplemented mice, or with wild-type derived BMDCs pre-treated with plasma from L. johnsonii-supplemented mice, reduced airway pathologic responses to infection in recipient animals. Thus, L. johnsonii-supplementation mediates airway mucosal protection via immunomodulatory metabolites and altered immune function.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease.

          To compare the anti-inflammatory properties of butyrate with two other SCFAs, namely acetate and propionate, which have less well-documented effects on inflammation. The effect of SCFAs on cytokine release from human neutrophils was studied with ELISA. SCFA-dependent modulation of NF-kappaB reporter activity was assessed in the human colon adenocarcinoma cell line, Colo320DM. Finally, the effect of SCFAs on gene expression and cytokine release, measured with RT-PCR and ELISA, respectively, was studied in mouse colon organ cultures established from colitic mice. Acetate, propionate and butyrate at 30 mmol/L decreased LPS-stimulated TNFalpha release from neutrophils, without affecting IL-8 protein release. All SCFAs dose dependently inhibited NF-kappaB reporter activity in Colo320DM cells. Propionate dose-dependently suppressed IL-6 mRNA and protein release from colon organ cultures and comparative studies revealed that propionate and butyrate at 30 mmol/L caused a strong inhibition of immune-related gene expression, whereas acetate was less effective. A similar inhibition was achieved with the proteasome inhibitor MG-132, but not the p38 MAPK inhibitor SB203580. All SCFAs decreased IL-6 protein release from organ cultures. In the present study propionate and butyrate were equipotent, whereas acetate was less effective, at suppressing NF-kappaB reporter activity, immune-related gene expression and cytokine release in vitro. Our findings suggest that propionate and acetate, in addition to butyrate, could be useful in the treatment of inflammatory disorders, including IBD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Commensal bacteria protect against food allergen sensitization.

            Environmentally induced alterations in the commensal microbiota have been implicated in the increasing prevalence of food allergy. We show here that sensitization to a food allergen is increased in mice that have been treated with antibiotics or are devoid of a commensal microbiota. By selectively colonizing gnotobiotic mice, we demonstrate that the allergy-protective capacity is conferred by a Clostridia-containing microbiota. Microarray analysis of intestinal epithelial cells from gnotobiotic mice revealed a previously unidentified mechanism by which Clostridia regulate innate lymphoid cell function and intestinal epithelial permeability to protect against allergen sensitization. Our findings will inform the development of novel approaches to prevent or treat food allergy based on modulating the composition of the intestinal microbiota.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Asthma and allergy patterns over 18 years after severe RSV bronchiolitis in the first year of life.

              An increased prevalence of asthma/recurrent wheeze (RW), clinical allergy and allergic sensitisation up to age 13 years has previously been reported in subjects hospitalised with respiratory syncytial virus (RSV) bronchiolitis in their first year of life compared with matched controls. A study was undertaken to examine whether these features persist into early adulthood, to report longitudinal wheeze and allergy patterns, and to see how large and small airway function relates to RSV infection and asthma. Follow-up at age 18 years was performed in 46 of 47 subjects with RSV and 92 of 93 controls. Assessments included questionnaire, clinical examination, skin prick tests, serum IgE antibodies to inhaled allergens, blood eosinophils, fraction of exhaled nitric oxide (FeNO), spirometry, multiple breath washout (lung clearance index, LCI) and dry air hyperventilation challenge. Increased prevalence of asthma/RW (39% vs 9%), clinical allergy (43% vs 17%) and sensitisation to perennial allergens (41% vs 14%) were present at age 18 in the RSV cohort compared with controls. Persistent/relapsing wheeze associated with early allergic sensitisation predominated in the RSV cohort compared with controls (30% vs 1%). Spirometric function was reduced in subjects with RSV with or without current asthma, but not in asthmatic controls. LCI was linked only to current asthma, airway hyperresponsiveness and FeNO. Severe early RSV bronchiolitis is associated with an increased prevalence of allergic asthma persisting into early adulthood. Small airway dysfunction (LCI) is related to current asthma and airway inflammation but not to RSV bronchiolitis. Reduced spirometry after RSV may reflect airway remodelling.
                Bookmark

                Author and article information

                Journal
                101299742
                35518
                Mucosal Immunol
                Mucosal Immunol
                Mucosal immunology
                1933-0219
                1935-3456
                7 February 2017
                15 March 2017
                15 September 2017
                : 10.1038/mi.2017.13
                Affiliations
                [1 ]University of Michigan, Ann Arbor, MI
                [2 ]University of California San Francisco, San Francisco, CA
                [3 ]Henry Ford Health System, Detroit, MI
                [4 ]Augusta University, GA.
                Article
                NIHMS846721
                10.1038/mi.2017.13
                5599307
                28295020
                c0a467da-ed28-4995-b7fb-d7402dcb6bf2

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Immunology
                Immunology

                Comments

                Comment on this article