Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Isolated Left Ventricular Noncompaction: An Unclassified Cardiomyopathy with Severe Prognosis in Adults

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Noncompaction of the ventricular myocardium is a rare congenital cardiomyopathy, which appears to represent an arrest in intrauterine endomyocardial morphogenesis. It is diagnosed both in children and adults. Its common presentation involves heart failure symptoms, ventricular tachyarrhythmias and thromboembolic events, but the age of onset varies widely. The diagnosis is made by the combined appearance of numerous, excessively prominent trabeculations and multiple deep intertrabecular recesses perfused from the ventricular cavity, commonly involving the apical and midventricular segments of the left ventricle. Although the peculiar echocardiographic picture may possibly lead to the correct diagnosis, this condition may be often misdiagnosed or unrecognized since it is not widely known.

          Related collections

          Most cited references 9

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12.

          FKBP12, a cis-trans prolyl isomerase that binds the immunosuppressants FK506 and rapamycin, is ubiquitously expressed and interacts with proteins in several intracellular signal transduction systems. Although FKBP12 interacts with the cytoplasmic domains of type I receptors of the transforming growth factor-beta (TGF-beta) superfamily in vitro, the function of FKBP12 in TGF-beta superfamily signalling is controversial. FKBP12 also physically interacts stoichiometrically with multiple intracellular calcium release channels including the tetrameric skeletal muscle ryanodine receptor (RyR1). In contrast, the cardiac ryanodine receptor, RyR2, appears to bind selectively the FKBP12 homologue, FKBP12.6. To define the functions of FKBP12 in vivo, we generated mutant mice deficient in FKBP12 using embryonic stem (ES) cell technology. FKBP12-deficient mice have normal skeletal muscle but have severe dilated cardiomyopathy and ventricular septal defects that mimic a human congenital heart disorder, noncompaction of left ventricular myocardium. About 9% of the mutants exhibit exencephaly secondary to a defect in neural tube closure. Physiological studies demonstrate that FKBP12 is dispensable for TGF-beta-mediated signalling, but modulates the calcium release activity of both skeletal and cardiac ryanodine receptors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Myocardial ischaemia in children with isolated ventricular non-compaction.

            Isolated ventricular non-compaction is a rare congenital cardiomyopathy with a high morbidity and mortality due to malignant arrhythmias and pump failure. Areas affected by non-compaction are characterized by increased trabecularization and deep inter-trabecular spaces. We hypothesized perfusion defects in these areas and performed positron emission tomography to evaluate the myocardial perfusion in non-compacted areas. Five children (age 10-14 years) with isolated ventricular non-compaction underwent positron emission tomography using N-13-ammonia as flow marker and intravenous dipyridamole for stress testing. Myocardial blood flow was quantified using the positron emission tomography time-activity curves in non-compacted areas and normal myocardium, which were diagnosed by echocardiography, magnetic resonance imaging, and angiography. Coronary angiography, performed in two children with extensive forms of left ventricular non-compaction, demonstrated normal coronary arteries. Myocardial blood flow measurements at rest and after dipyridamole application demonstrated 16-33% and 32-57% perfusion impairment, respectively, in non-compacted areas compared to normal myocardium. Areas of restricted myocardial perfusion corresponded well to the non-compacted areas, defined echographically and by magnetic resonance imaging. Positron emission tomography demonstrates restricted myocardial perfusion and decreased flow reserve in areas of ventricular non-compaction in children. The myocardial perfusion defects in non-compacted areas may be the cause of myocardial damage and possibly form the basis of arrhythmias and pump failure. Copyright 1999 The European Society of Cardiology.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Isolated noncompaction of the myocardium.

               R Jenni,  J. Rojas,  E Oechslin (1999)
                Bookmark

                Author and article information

                Journal
                CRD
                Cardiology
                10.1159/issn.0008-6312
                Cardiology
                S. Karger AG
                0008-6312
                1421-9751
                2002
                September 2002
                26 September 2002
                : 98
                : 1-2
                : 25-32
                Affiliations
                Departments of aCardiology and bRadiology, University of Athens, Greece
                Article
                64677 Cardiology 2002;98:25–32
                10.1159/000064677
                12373044
                © 2002 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 4, Tables: 1, References: 46, Pages: 8
                Categories
                General Cardiology

                Comments

                Comment on this article