51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      p53 is required for radiation-induced apoptosis in mouse thymocytes.

      1 , , , ,
      Nature
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The p53 tumour suppressor gene is the most widely mutated gene in human tumorigenesis. p53 encodes a transcriptional activator whose targets may include genes that regulate genomic stability, the cellular response to DNA damage, and cell-cycle progression. Introduction of wild-type p53 into cell lines that have lost endogenous p53 function can cause growth arrest or induce a process of cell death known as apoptosis. During normal development, self-reactive thymocytes undergo negative selection by apoptosis, which can also be induced in immature thymocytes by other stimuli, including exposure to glucocorticoids and ionizing radiation. Although normal negative selection involves signalling through the T-cell receptor, the induction of apoptosis by other stimuli is poorly understood. We have investigated the requirement for p53 during apoptosis in mouse thymocytes. We report here that immature thymocytes lacking p53 die normally when exposed to compounds that may mimic T-cell receptor engagement and to glucocorticoids but are resistant to the lethal effects of ionizing radiation. These results demonstrate that p53 is required for radiation-induced cell death in the thymus but is not necessary for all forms of apoptosis.

          Related collections

          Author and article information

          Journal
          Nature
          Nature
          Springer Science and Business Media LLC
          0028-0836
          0028-0836
          Apr 29 1993
          : 362
          : 6423
          Affiliations
          [1 ] Department of Biology, Massachusetts, Cambridge 02139.
          Article
          10.1038/362847a0
          8479522
          c0bb66e5-c3b6-4edd-813e-9070ba92c7c6
          History

          Comments

          Comment on this article