Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Anti-neuroinflammatory activities of indole alkaloids from kanjang (Korean fermented soy source) in lipopolysaccharide-induced BV2 microglial cells

      , , , , , , ,

      Food Chemistry

      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kanjang (Korean soy sauce) is a byproduct of the production of the Korean fermented soybean. In the present study, seven indole alkaloid derivatives were isolated from methanol extract of kanjang. Their structures were identified as 1-propyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (1), 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (2), 1-methyl-1,2,3,4-tetrahydro-β-carboline-1-carboxylic acid (3), 3-indoleacetic acid (4), Nb-acetyltryptamine (5), 1-methyl-3,4-dihydro-β-carboline (6), and flazine (7) by NMR and MS analyses. Preliminary screening for anti-neuroinflammatory effects of isolated indole alkaloids in lipopolysaccharide (LPS)-stimulated BV2 cells revealed that these compounds inhibited the production of nitric oxide and prostaglandin E2. For the subsequent investigation of anti-neuroinflammatory action of these metabolites, compounds 4 and 7 were selected, and the results revealed that these inhibitory effects correlated with the suppressive effect of 4 and 7 on inducible nitric oxide synthase and cyclooxygenase-2 expression in LPS-stimulated BV2 cells. In regards to the mechanism of the anti-inflammatory effect, 4 and 7 significantly inhibited the nuclear factor-kappa B pathway.

          Related collections

          Author and article information

          Journal
          Food Chemistry
          Food Chemistry
          Elsevier BV
          03088146
          December 2016
          December 2016
          : 213
          : 69-75
          Article
          10.1016/j.foodchem.2016.06.068
          27451156
          © 2016

          Comments

          Comment on this article