18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intelligent Design of Nano-Scale Molecular Imaging Agents

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Semiconductor nanocrystals as fluorescent biological labels.

          Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            On/off blinking and switching behaviour of single molecules of green fluorescent protein.

            Optical studies of individual molecules at low and room temperature can provide information about the dynamics of local environments in solids, liquids and biological systems unobscured by ensemble averaging. Here we present a study of the photophysical behaviour of single molecules of the green fluorescent protein (GFP) derived from the jellyfish Aequorea victoria. Wild-type GFP and its mutant have attracted interest as fluorescent biological labels because the fluorophore may be formed in vivo. GFP mutants immobilized in aereated aqueous polymer gels and excited by 488-nm light undergo repeated cycles of fluorescent emission ('blinking') on a timescale of several seconds-behaviour that would be unobservable in bulk studies. Eventually the individual GFP molecules reach a long-lasting dark state, from which they can be switched back to the original emissive state by irradiation at 405 nm. This suggests the possibility of using these GFPs as fluorescent markers for time-dependent cell processes, and as molecular photonic switches or optical storage elements, addressable on the single-molecule level.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circular permutation and receptor insertion within green fluorescent proteins.

              Many areas of biology and biotechnology have been revolutionized by the ability to label proteins genetically by fusion to the Aequorea green fluorescent protein (GFP). In previous fusions, the GFP has been treated as an indivisible entity, usually appended to the amino or carboxyl terminus of the host protein, occasionally inserted within the host sequence. The tightly interwoven, three-dimensional structure and intricate posttranslational self-modification required for chromophore formation would suggest that major rearrangements or insertions within GFP would prevent fluorescence. However, we now show that several rearrangements of GFPs, in which the amino and carboxyl portions are interchanged and rejoined with a short spacer connecting the original termini, still become fluorescent. These circular permutations have altered pKa values and orientations of the chromophore with respect to a fusion partner. Furthermore, certain locations within GFP tolerate insertion of entire proteins, and conformational changes in the insert can have profound effects on the fluorescence. For example, insertions of calmodulin or a zinc finger domain in place of Tyr-145 of a yellow mutant (enhanced yellow fluorescent protein) of GFP result in indicator proteins whose fluorescence can be enhanced severalfold upon metal binding. The calmodulin graft into enhanced yellow fluorescent protein can monitor cytosolic Ca(2+) in single mammalian cells. The tolerance of GFPs for circular permutations and insertions shows the folding process is surprisingly robust and offers a new strategy for creating genetically encodable, physiological indicators.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                Molecular Diversity Preservation International (MDPI)
                1422-0067
                2012
                12 December 2012
                : 13
                : 12
                : 16986-17005
                Affiliations
                [1 ]Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
                [2 ]Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; E-Mails: mitsuru@ 123456chem.s.u-tokyo.ac.jp (M.H.); ozawa@ 123456chem.s.u-tokyo.ac.jp (T.O.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: kimu-sb@ 123456aist.go.jp ; Tel.: +81-29-861-8027; Fax: +81-29-861-8308.
                Article
                ijms-13-16986
                10.3390/ijms131216986
                3546735
                23235326
                c0c8f536-5ec1-46a2-868e-ad626eed7b55
                © 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 21 September 2012
                : 26 November 2012
                Categories
                Review

                Molecular biology
                imaging agent,molecular probe,optical signature,smart design,bioluminescence
                Molecular biology
                imaging agent, molecular probe, optical signature, smart design, bioluminescence

                Comments

                Comment on this article