9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A novel intramuscular Interstitial Cell of Cajal is a candidate for generating pacemaker activity in the mouse internal anal sphincter

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The internal anal sphincter (IAS) generates phasic contractions and tone. Slow waves (SWs) produced by interstitial cells of Cajal (ICC) underlie phasic contractions in other gastrointestinal regions. SWs are also present in the IAS where only intramuscular ICC (ICC-IM) are found, however the evidence linking ICC-IM to SWs is limited. This study examined the possible relationship between ICC-IM and SWs by recording Ca 2+ transients in mice expressing a genetically-encoded Ca 2+-indicator in ICC (Kit-Cre-GCaMP6f). A role for L-type Ca 2+ channels (Cav L) and anoctamin 1 (ANO1) was tested since each is essential for SW and tone generation. Two distinct ICC-IM populations were identified. Type I cells (36% of total) displayed localised asynchronous Ca 2+ transients not dependent on Cav L or ANO1; properties typical of ICC-IM mediating neural responses in other gastrointestinal regions. A second novel sub-type, i.e., Type II cells (64% of total) generated rhythmic, global Ca 2+ transients at the SW frequency that were synchronised with neighbouring Type II cells and were abolished following blockade of either Cav L or ANO1. Thus, the spatiotemporal characteristics of Type II cells and their dependence upon Cav L and ANO1 all suggest that these cells are viable candidates for the generation of SWs and tone in the IAS.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Interstitial cells: regulators of smooth muscle function.

          Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα(+) cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα(+) cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract.

            Populations of interstitial cells of Cajal (ICC) are altered in several gastrointestinal neuromuscular disorders. ICC are identified typically by ultrastructure and expression of Kit (CD117), a protein that is also expressed on mast cells. No other molecular marker currently exists to independently identify ICC. The expression of ANO1 (DOG1, TMEM16A), a Ca(2+)-activated Cl(-) channel, in gastrointestinal stromal tumors suggests it may be useful as an ICC marker. The aims of this study were therefore to determine the distribution of Ano1 immunoreactivity compared with Kit and to establish whether Ano1 is a reliable marker for human and mouse ICC. Expression of Ano1 in human and mouse stomach, small intestine, and colon was investigated by immunofluorescence labeling using antibodies to Ano1 alone and in combination with antibodies to Kit. Colocalization of immunoreactivity was demonstrated by epifluorescence and confocal microscopy. In the muscularis propria, Ano1 immunoreactivity was restricted to cells with the morphology and distribution of ICC. All Ano1-positive cells in the muscularis propria were also Kit positive. Kit-expressing mast cells were not Ano1 positive. Some non-ICC in the mucosa and submucosa of human tissues were Ano1 positive but Kit negative. A few (3.2%) Ano1-positive cells in the human gastric muscularis propria were labeled weakly for Kit. Ano1 labels all classes of ICC and represents a highly specific marker for studying the distribution of ICC in mouse and human tissues with an advantage over Kit since it does not label mast cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Ca(2+)-activated Cl(-) conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity.

              Interstitial cells of Cajal (ICC) are unique cells that generate electrical pacemaker activity in gastrointestinal (GI) muscles. Many previous studies have attempted to characterize the conductances responsible for pacemaker current and slow waves in the GI tract, but the precise mechanism of electrical rhythmicity is still debated. We used a new transgenic mouse with a bright green fluorescent protein (copGFP) constitutively expressed in ICC to facilitate study of these cells in mixed cell dispersions. We found that ICC express a specialized 'slow wave' current. Reversal of tail current analysis showed this current was due to a Cl(-) selective conductance. ICC express ANO1, a Ca(2+)-activated Cl(-) channel. Slow wave currents are not voltage dependent, but a secondary voltage-dependent process underlies activation of these currents. Removal of extracellular Ca(2+), replacement of Ca(2+) with Ba(2+), or extracellular Ni(2+) (30 microm) blocked the slow wave current. Single Ca(2+)-activated Cl() channels with a unitary conductance of 7.8 pS were resolved in excised patches of ICC. These are similar in conductance to ANO1 channels (8 pS) expressed in HEK293 cells. Slow wave current was blocked in a concentration-dependent manner by niflumic acid (IC(50) = 4.8 microm). Slow wave currents are associated with transient depolarizations of ICC in current clamp, and these events were blocked by niflumic acid. These findings demonstrate a role for a Ca(2+)-activated Cl(-) conductance in slow wave current in ICC and are consistent with the idea that ANO1 participates in pacemaker activity.
                Bookmark

                Author and article information

                Contributors
                ccobine@med.unr.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                25 June 2020
                25 June 2020
                2020
                : 10
                : 10378
                Affiliations
                ISNI 0000 0000 9961 7078, GRID grid.476990.5, Department of Physiology and Cell Biology, , University of Nevada, Reno School of Medicine, ; Reno, NV 89557 USA
                Article
                67142
                10.1038/s41598-020-67142-y
                7316801
                32587396
                c0cff609-5cf6-4f81-8ed6-cb992c4e7930
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 5 December 2019
                : 3 June 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                physiology,gastroenterology,gastrointestinal system
                Uncategorized
                physiology, gastroenterology, gastrointestinal system

                Comments

                Comment on this article