59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Environmental and genetic modulation of the phenotypic expression of antibiotic resistance

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antibiotic resistance can be acquired by mutation or horizontal transfer of a resistance gene, and generally an acquired mechanism results in a predictable increase in phenotypic resistance. However, recent findings suggest that the environment and/or the genetic context can modify the phenotypic expression of specific resistance genes/mutations. An important implication from these findings is that a given genotype does not always result in the expected phenotype. This dissociation of genotype and phenotype has important consequences for clinical bacteriology and for our ability to predict resistance phenotypes from genetics and DNA sequences. A related problem concerns the degree to which the genes/mutations currently identified in vitro can fully explain the in vivo resistance phenotype, or whether there is a significant additional amount of presently unknown mutations/genes (genetic ‘dark matter’) that could contribute to resistance in clinical isolates. Finally, a very important question is whether/how we can identify the genetic features that contribute to making a successful pathogen, and predict why some resistant clones are very successful and spread globally? In this review, we describe different environmental and genetic factors that influence phenotypic expression of antibiotic resistance genes/mutations and how this information is needed to understand why particular resistant clones spread worldwide and to what extent we can use DNA sequences to predict evolutionary success.

          Abstract

          The ability to predict resistance phenotypes from DNA sequence data, and to understand the success of problematic resistant clones, depends on having a good understanding of how environmental factors and genetic context modulate the expression of antibiotic resistance phenotypes and clonal success.

          Related collections

          Most cited references188

          • Record: found
          • Abstract: found
          • Article: not found

          Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome".

          The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.
            • Record: found
            • Abstract: found
            • Article: not found

            A common mechanism of cellular death induced by bactericidal antibiotics.

            Antibiotic mode-of-action classification is based upon drug-target interaction and whether the resultant inhibition of cellular function is lethal to bacteria. Here we show that the three major classes of bactericidal antibiotics, regardless of drug-target interaction, stimulate the production of highly deleterious hydroxyl radicals in Gram-negative and Gram-positive bacteria, which ultimately contribute to cell death. We also show, in contrast, that bacteriostatic drugs do not produce hydroxyl radicals. We demonstrate that the mechanism of hydroxyl radical formation induced by bactericidal antibiotics is the end product of an oxidative damage cellular death pathway involving the tricarboxylic acid cycle, a transient depletion of NADH, destabilization of iron-sulfur clusters, and stimulation of the Fenton reaction. Our results suggest that all three major classes of bactericidal drugs can be potentiated by targeting bacterial systems that remediate hydroxyl radical damage, including proteins involved in triggering the DNA damage response, e.g., RecA.
              • Record: found
              • Abstract: found
              • Article: not found

              Microbiological effects of sublethal levels of antibiotics.

              The widespread use of antibiotics results in the generation of antibiotic concentration gradients in humans, livestock and the environment. Thus, bacteria are frequently exposed to non-lethal (that is, subinhibitory) concentrations of drugs, and recent evidence suggests that this is likely to have an important role in the evolution of antibiotic resistance. In this Review, we discuss the ecology of antibiotics and the ability of subinhibitory concentrations to select for bacterial resistance. We also consider the effects of low-level drug exposure on bacterial physiology, including the generation of genetic and phenotypic variability, as well as the ability of antibiotics to function as signalling molecules. Together, these effects accelerate the emergence and spread of antibiotic-resistant bacteria among humans and animals.

                Author and article information

                Journal
                FEMS Microbiol Rev
                FEMS Microbiol. Rev
                femsre
                FEMS Microbiology Reviews
                Oxford University Press
                0168-6445
                1574-6976
                08 March 2017
                May 2017
                08 March 2017
                : 41
                : 3
                : 374-391
                Affiliations
                [1]Dep artment of Medical Biochemistry and Microbiology, Biomedical Center (Box 582), Uppsala University, S-751 23 Uppsala, Sweden
                Author notes
                [* ]Corresponding author: Department of Medical Biochemistry and Microbiology, Biomedical Center (Box 582), Uppsala University, S-751 23 Uppsala, Sweden. Tel: +46 18 4714507; E-mail: Diarmaid.hughes@ 123456imbim.uu.se
                Article
                fux004
                10.1093/femsre/fux004
                5435765
                28333270
                c0df92a6-157e-4b80-b054-ae995e722e40
                © FEMS 2017.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 01 February 2017
                : 24 September 2016
                Page count
                Pages: 18
                Categories
                Review Article

                Microbiology & Virology
                persisters,pan genome,epistasis,successful clones,heteroresistance,virulence
                Microbiology & Virology
                persisters, pan genome, epistasis, successful clones, heteroresistance, virulence

                Comments

                Comment on this article

                Related Documents Log