22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Smad7 is an inhibitory Smad that acts as a negative regulator of signaling by the transforming growth factor-beta (TGF-beta) superfamily proteins. Smad7 is induced by TGF-beta, stably interacts with activated TGF-beta type I receptor (TbetaR-I), and interferes with the phosphorylation of receptor-regulated Smads. Here we show that Smurf1, an E3 ubiquitin ligase for bone morphogenetic protein-specific Smads, also interacts with Smad7 and induces Smad7 ubiquitination and translocation into the cytoplasm. In addition, Smurf1 associates with TbetaR-I via Smad7, with subsequent enhancement of turnover of TbetaR-I and Smad7. These results thus reveal a novel function of Smad7, i.e. induction of degradation of TbetaR-I through recruitment of an E3 ligase to the receptor.

          Related collections

          Author and article information

          Journal
          J Biol Chem
          The Journal of biological chemistry
          American Society for Biochemistry & Molecular Biology (ASBMB)
          0021-9258
          0021-9258
          Apr 20 2001
          : 276
          : 16
          Affiliations
          [1 ] Department of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research, and Research for the Future Program, the Japan Society for the Promotion of Science, 1-37-1 Kami-ikebukuro, Toshima-ku, Tokyo 170-8455, Japan.
          Article
          S0021-9258(19)34340-6
          10.1074/jbc.C100008200
          11278251
          c0e00eb2-0d68-4503-a534-359c316b4274
          History

          Comments

          Comment on this article