47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular mechanics of mineralized collagen fibrils in bone

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone is a natural composite of collagen protein and the mineral hydroxyapatite. The structure of bone is known to be important to its load-bearing characteristics, but relatively little is known about this structure or the mechanism that govern deformation at the molecular scale. Here we perform full-atomistic calculations of the three-dimensional molecular structure of a mineralized collagen protein matrix to try to better understand its mechanical characteristics under tensile loading at various mineral densities. We find that as the mineral density increases, the tensile modulus of the network increases monotonically and well beyond that of pure collagen fibrils. Our results suggest that the mineral crystals within this network bears up to four times the stress of the collagen fibrils, whereas the collagen is predominantly responsible for the material’s deformation response. These findings reveal the mechanism by which bone is able to achieve superior energy dissipation and fracture resistance characteristics beyond its individual constituents.

          Abstract

          Bone is a natural composite of collagen and hydroxyapatite but, surprising, little is known about its characteristics at the molecular scale. Nair et al. conduct molecular-scale simulations of mineralized collagen networks to better understand how bone achieves superior mechanical properties to its constituents.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Article: not found

          Nature’s hierarchical materials

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            THE MATERIAL BONE: Structure-Mechanical Function Relations

            ▪ Abstract The term bone refers to a family of materials, all of which are built up of mineralized collagen fibrils. They have highly complex structures, described in terms of up to 7 hierarchical levels of organization. These materials have evolved to fulfill a variety of mechanical functions, for which the structures are presumably fine-tuned. Matching structure to function is a challenge. Here we review the structure-mechanical relations at each of the hierarchical levels of organization, highlighting wherever possible both underlying strategies and gaps in our knowledge. The insights gained from the study of these fascinating materials are not only important biologically, but may well provide novel ideas that can be applied to the design of synthetic materials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture.

              Properties of the organic matrix of bone as well as its function in the microstructure could be the key to the remarkable mechanical properties of bone. Previously, it was found that on the molecular level, calcium-mediated sacrificial bonds increased stiffness and enhanced energy dissipation in bone constituent molecules. Here we present evidence for how this sacrificial bond and hidden length mechanism contributes to the mechanical properties of the bone composite, by investigating the nanoscale arrangement of the bone constituents and their interactions. We find evidence that bone consists of mineralized collagen fibrils and a non-fibrillar organic matrix, which acts as a 'glue' that holds the mineralized fibrils together. We believe that this glue may resist the separation of mineralized collagen fibrils. As in the case of the sacrificial bonds in single molecules, the effectiveness of this mechanism increases with the presence of Ca2+ ions.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                16 April 2013
                : 4
                : 1724
                Affiliations
                [1 ]Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Room 1-235 A and B, Cambridge, Massachusetts 02139, USA
                [2 ]Biomechanics Group, Department of Electronics, Information and Bioengineering, Politecnico di Milano , Via Golgi 39, 20133 Milan, Italy
                [3 ]Center for Computational Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
                [4 ]Center for Materials Science and Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
                Author notes
                Article
                ncomms2720
                10.1038/ncomms2720
                3644085
                23591891
                c0e9791a-954e-4681-a048-d7457c2d523f
                Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 23 July 2012
                : 08 March 2013
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article