24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Parasites and Pathogens of the Honeybee ( Apis mellifera) and Their Influence on Inter-Colonial Transmission

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pathogens and parasites may facilitate their transmission by manipulating host behavior. Honeybee pathogens and pests need to be transferred from one colony to another if they are to maintain themselves in a host population. Inter-colony transmission occurs typically through honeybee workers not returning to their home colony but entering a foreign colony (“drifting”). Pathogens might enhance drifting to enhance transmission to new colonies. We here report on the effects infection by ten honeybee viruses and Nosema spp., and Varroa mite infestation on honeybee drifting. Genotyping of workers collected from colonies allowed us to identify genuine drifted workers as well as source colonies sending out drifters in addition to sink colonies accepting them. We then used network analysis to determine patterns of drifting. Distance between colonies in the apiary was the major factor explaining 79% of drifting. None of the tested viruses or Nosema spp. were associated with the frequency of drifting. Only colony infestation with Varroa was associated with significantly enhanced drifting. More specifically, colonies with high Varroa infestation had a significantly enhanced acceptance of drifters, although they did not send out more drifting workers. Since Varroa-infested colonies show an enhanced attraction of drifting workers, and not only those infected with Varroa and its associated pathogens, infestation by Varroa may also facilitate the uptake of other pests and parasites.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material.

          Procedures utilizing Chelex 100 chelating resin have been developed for extracting DNA from forensic-type samples for use with the PCR. The procedures are simple, rapid, involve no organic solvents and do not require multiple tube transfers for most types of samples. The extraction of DNA from semen and very small bloodstains using Chelex 100 is as efficient or more efficient than using proteinase K and phenol-chloroform extraction. DNA extracted from bloodstains seems less prone to contain PCR inhibitors when prepared by this method. The Chelex method has been used with amplification and typing at the HLA DQ alpha locus to obtain the DQ alpha genotypes of many different types of samples, including whole blood, bloodstains, seminal stains, buccal swabs, hair and post-coital samples. The results of a concordance study are presented in which the DQ alpha genotypes of 84 samples prepared using Chelex or using conventional phenol-chloroform extraction are compared. The genotypes obtained using the two different extraction methods were identical for all samples tested.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite varroa jacobsoni Oud

            Under field conditions, Varroa jacobsoni were shown to be highly effective vectors of deformed wing virus (DWV) between bees. Adult female mites obtained from honeybee pupae naturally infected with DWV contained virus titers many times in excess of those found in their hosts and, beyond that, which might be expected from a concentration effect. It is therefore possible that DWV may be capable of replicating within V. jacobsoni. Bees which tested positive for DWV exhibited characteristic morphological deformity and/or they died during pupation. Asymptomatic bees had much lower virus titers than those which were deformed or had died during pupation. It is therefore suggested that for DWV to cause pathology it must be present in pupae above a certain concentration. The amount of DWV vectored by V. jacobsoni will depend on the mites' level of infection, which will in turn depend on whether they had fed previously on dead or deformed bees and also on the rate of replication of the virus within the mites. Consequently, developing bees infested with large numbers of mites could suffer a high incidence of deformity if the mites are heavily infected or harbor an especially virulent strain of virus. A positive relationship was found between increasing numbers of mites on individual bees and the incidence of morphological deformity and death. This probably reflected the large number of viral particles transmitted by the mites, which resulted in many multiply infested bees dying before emergence. These results demonstrate the importance of the role of viruses when considering the pathology of V. jacobsoni and that much of the pathology previously associated with the effects of mite feeding could be attributed directly to secondary pathogens vectored by V. jacobsoni. Copyright 1999 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses.

              Although pollinator declines are a global biodiversity threat, the demography of the western honeybee (Apis mellifera) has not been considered by conservationists because it is biased by the activity of beekeepers. To fill this gap in pollinator decline censuses and to provide a broad picture of the current status of honeybees across their natural range, we used microsatellite genetic markers to estimate colony densities and genetic diversity at different locations in Europe, Africa, and central Asia that had different patterns of land use. Genetic diversity and colony densities were highest in South Africa and lowest in Northern Europe and were correlated with mean annual temperature. Confounding factors not related to climate, however, are also likely to influence genetic diversity and colony densities in honeybee populations. Land use showed a significantly negative influence over genetic diversity and the density of honeybee colonies over all sampling locations. In Europe honeybees sampled in nature reserves had genetic diversity and colony densities similar to those sampled in agricultural landscapes, which suggests that the former are not wild but may have come from managed hives. Other results also support this idea: putative wild bees were rare in our European samples, and the mean estimated density of honeybee colonies on the continent closely resembled the reported mean number of managed hives. Current densities of European honeybee populations are in the same range as those found in the adverse climatic conditions of the Kalahari and Saharan deserts, which suggests that beekeeping activities do not compensate for the loss of wild colonies. Our findings highlight the importance of reconsidering the conservation status of honeybees in Europe and of regarding beekeeping not only as a profitable business for producing honey, but also as an essential component of biodiversity conservation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                9 October 2015
                2015
                : 10
                : 10
                : e0140337
                Affiliations
                [1 ]Institute of Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
                [2 ]University of Hohenheim, Apicultural State Institute, Stuttgart,Germany
                [3 ]Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
                University of North Carolina, Greensboro, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: RJP RFAM PR EF MEN. Performed the experiments: EF MEN. Analyzed the data: MEN NF. Contributed reagents/materials/analysis tools: NF EF MEN RJP RFAM PR. Wrote the paper: NF MEN RJP RFAM PR.

                Article
                PONE-D-15-17058
                10.1371/journal.pone.0140337
                4599887
                26451849
                c0ec8b6c-06da-41a4-a1a6-1a4c41a14463
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 23 April 2015
                : 24 September 2015
                Page count
                Figures: 3, Tables: 1, Pages: 14
                Funding
                This work was supported by the Federal Ministry of Food, Agriculture and Consumer Protection (Germany): Fit Bee project (grant 511-06.01-28-1-71.007-10). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article