0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Exercise-Induced Blood Prolactin Variations in Trained Adult Males: A Thermic Stress More than an Osmotic Stress

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Blood prolactin (PRL) variations have been linked to temperature and osmotic changes in several species. The latter factors are here explored to better understand blood PRL responses frequently induced during physical exercise. Since body heat generated by exercise can lead to marked body fluid shifts, it was postulated that PRL changes observed during exercise could be associated with variations in body temperature and/or blood osmolality (OSM). A wide range (38.5–40.5°C) of rectal temperatures (Tr; used here to appreciate core temperatures) were theoretically selected and randomly assigned as targets to male runners. Measured by thermistor probe, target Tr were obtained by a combination of factors: (a) ↑ heat production by treadmill running, and (b) ⇓ heat losses by appropriate clothing (⇓ evaporation) in warmed (⇓ radiation) and hypo ventilated (⇓ convection) laboratory conditions. For each subject, target Tr was attained not prior to 30 min after initiation of running, and had to be maintained for at least 10 min, for a mean ( ± SD) running time of 52.6 ± 10.0 min. In a first protocol, hypohydration was provoked in 26 runners (23.9 ± 4.7 years) by total restriction of water intake. In a second protocol (10 different runners: 22.3 ± 3.3 years), euhydration was maintained by water intake (20 ml/kg body weight). Venous blood was sampled at rest before and immediately after the run. PRL was assayed by RIA; OSM was measured by freezing point depression; sodium was analyzed by flame photometry. At rest, before the heat-producing exercise, mean PRL values were 9.4 ± 3.4 ng/ml for both eu/hypohydrated groups. In the hypohydrated runners, exercise-induced hyperthermia was significantly (r = 0.82; p < 0.0005) associated with blood PRL responses. Moreover, these changes in Tr were also significantly (r = 0.54; p < 0.0025) related to changes in OSM, the latter variations being mostly explained (78 %) by the accompanying hypernatremia. In the euhydrated group of runners, the hyperthermic exercise failed to induce significant changes in OSM (r = 0.22; p > 0.15) and, as expected, variations in blood sodium levels were also not significant under these conditions. However, hyperthermic running in these iso-osmolar conditions did not prevent blood PRL levels from rising (r = 0.77; p < 0.0005). It was thus concluded that, in male trained runners, exercise-induced blood PRL responses could be derived more from thermic than from osmolar stresses.

          Related collections

          Author and article information

          Journal
          HRE
          Horm Res Paediatr
          10.1159/issn.1663-2818
          Hormone Research in Paediatrics
          S. Karger AG
          1663-2818
          1663-2826
          1986
          1986
          28 November 2008
          : 23
          : 4
          : 200-206
          Affiliations
          Institut National de la Recherche Scientifique a, Centre Hospitalier St-Joseph de Trois-Rivières b, Université de Montréal c, Université de Sherbrooke d and Université du Québec à Rimouski e, Que., Canada
          Article
          180324 Horm Res 1986;23:200–206
          10.1159/000180324
          3699692
          © 1986 S. Karger AG, Basel

          Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

          Page count
          Pages: 7
          Categories
          Paper

          Comments

          Comment on this article