32
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan Pangolins ( Manis javanica)

      research-article
      1 , 2 , 1 , *
      Viruses
      MDPI
      virome, Manis javanica, Sendai virus, Coronavirus, molecular epidemiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pangolins are endangered animals in urgent need of protection. Identifying and cataloguing the viruses carried by pangolins is a logical approach to evaluate the range of potential pathogens and help with conservation. This study provides insight into viral communities of Malayan Pangolins ( Manis javanica) as well as the molecular epidemiology of dominant pathogenic viruses between Malayan Pangolin and other hosts. A total of 62,508 de novo assembled contigs were constructed, and a BLAST search revealed 3600 ones (≥300 nt) were related to viral sequences, of which 68 contigs had a high level of sequence similarity to known viruses, while dominant viruses were the Sendai virus and Coronavirus. This is the first report on the viral diversity of pangolins, expanding our understanding of the virome in endangered species, and providing insight into the overall diversity of viruses that may be capable of directly or indirectly crossing over into other mammals.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats.

          Although the finding of severe acute respiratory syndrome coronavirus (SARS-CoV) in caged palm civets from live animal markets in China has provided evidence for interspecies transmission in the genesis of the SARS epidemic, subsequent studies suggested that the civet may have served only as an amplification host for SARS-CoV. In a surveillance study for CoV in noncaged animals from the wild areas of the Hong Kong Special Administration Region, we identified a CoV closely related to SARS-CoV (bat-SARS-CoV) from 23 (39%) of 59 anal swabs of wild Chinese horseshoe bats (Rhinolophus sinicus) by using RT-PCR. Sequencing and analysis of three bat-SARS-CoV genomes from samples collected at different dates showed that bat-SARS-CoV is closely related to SARS-CoV from humans and civets. Phylogenetic analysis showed that bat-SARS-CoV formed a distinct cluster with SARS-CoV as group 2b CoV, distantly related to known group 2 CoV. Most differences between the bat-SARS-CoV and SARS-CoV genomes were observed in the spike genes, ORF 3 and ORF 8, which are the regions where most variations also were observed between human and civet SARS-CoV genomes. In addition, the presence of a 29-bp insertion in ORF 8 of bat-SARS-CoV genome, not in most human SARS-CoV genomes, suggests that it has a common ancestor with civet SARS-CoV. Antibody against recombinant bat-SARS-CoV nucleocapsid protein was detected in 84% of Chinese horseshoe bats by using an enzyme immunoassay. Neutralizing antibody to human SARS-CoV also was detected in bats with lower viral loads. Precautions should be exercised in the handling of these animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Hospital Outbreak of Middle East Respiratory Syndrome Coronavirus

            In September 2012, the World Health Organization reported the first cases of pneumonia caused by the novel Middle East respiratory syndrome coronavirus (MERS-CoV). We describe a cluster of health care-acquired MERS-CoV infections. Medical records were reviewed for clinical and demographic information and determination of potential contacts and exposures. Case patients and contacts were interviewed. The incubation period and serial interval (the time between the successive onset of symptoms in a chain of transmission) were estimated. Viral RNA was sequenced. Between April 1 and May 23, 2013, a total of 23 cases of MERS-CoV infection were reported in the eastern province of Saudi Arabia. Symptoms included fever in 20 patients (87%), cough in 20 (87%), shortness of breath in 11 (48%), and gastrointestinal symptoms in 8 (35%); 20 patients (87%) presented with abnormal chest radiographs. As of June 12, a total of 15 patients (65%) had died, 6 (26%) had recovered, and 2 (9%) remained hospitalized. The median incubation period was 5.2 days (95% confidence interval [CI], 1.9 to 14.7), and the serial interval was 7.6 days (95% CI, 2.5 to 23.1). A total of 21 of the 23 cases were acquired by person-to-person transmission in hemodialysis units, intensive care units, or in-patient units in three different health care facilities. Sequencing data from four isolates revealed a single monophyletic clade. Among 217 household contacts and more than 200 health care worker contacts whom we identified, MERS-CoV infection developed in 5 family members (3 with laboratory-confirmed cases) and in 2 health care workers (both with laboratory-confirmed cases). Person-to-person transmission of MERS-CoV can occur in health care settings and may be associated with considerable morbidity. Surveillance and infection-control measures are critical to a global public health response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data

              Abstract Quality control (QC) and preprocessing are essential steps for sequencing data analysis to ensure the accuracy of results. However, existing tools cannot provide a satisfying solution with integrated comprehensive functions, proper architectures, and highly scalable acceleration. In this article, we demonstrate SOAPnuke as a tool with abundant functions for a “QC-Preprocess-QC” workflow and MapReduce acceleration framework. Four modules with different preprocessing functions are designed for processing datasets from genomic, small RNA, Digital Gene Expression, and metagenomic experiments, respectively. As a workflow-like tool, SOAPnuke centralizes processing functions into 1 executable and predefines their order to avoid the necessity of reformatting different files when switching tools. Furthermore, the MapReduce framework enables large scalability to distribute all the processing works to an entire compute cluster. We conducted a benchmarking where SOAPnuke and other tools are used to preprocess a ∼30× NA12878 dataset published by GIAB. The standalone operation of SOAPnuke struck a balance between resource occupancy and performance. When accelerated on 16 working nodes with MapReduce, SOAPnuke achieved ∼5.7 times the fastest speed of other tools.
                Bookmark

                Author and article information

                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                24 October 2019
                November 2019
                : 11
                : 11
                : 979
                Affiliations
                [1 ]Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China; pingliu0330@ 123456126.com
                [2 ]Guangzhou Zoo, Guangzhou 510230, China; chenwu-01@ 123456163.com
                Author notes
                [* ]Correspondence: chenjp@ 123456giabr.gd.cn ; Tel.: +020-8910-0920
                Article
                viruses-11-00979
                10.3390/v11110979
                6893680
                31652964
                c0ef0e18-e4ce-4bc6-953f-2012451c4c3c
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 September 2019
                : 21 October 2019
                Categories
                Article

                Microbiology & Virology
                virome,manis javanica,sendai virus,coronavirus,molecular epidemiology
                Microbiology & Virology
                virome, manis javanica, sendai virus, coronavirus, molecular epidemiology

                Comments

                Comment on this article