8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Advanced glycation end products in serum predict changes in the kidney morphology of patients with insulin-dependent diabetes mellitus.

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The biochemical mechanisms that cause the development and progression of diabetic nephropathy are unknown. Advanced glycation end products (AGEs) might play a role, as shown by increased levels of tissue-bound and circulating AGEs that correlate with the severity of diabetic nephropathy. The aim of the present study was to investigate if circulating AGEs predict the progression of morphological pathology in patients with diabetic nephropathy. We have developed an immunoassay to determine serum levels of AGEs. In a prospective clinical trial of young insulin-dependent diabetes mellitus (IDDM) patients with microalbuminuria, kidney biopsies were taken at baseline and after 24 to 36 months. The biopsies were analyzed for structural changes in the glomeruli by quantitative morphometry (electron microscopy). We have retrospectively analyzed serum AGEs. The mean serum level of AGEs at the start of the study was 18.7 U/mL (95% confidence interval [CI], 16.9 to 20.5). A positive correlation between serum AGE levels at the start of study and changes from baseline to follow-up study in basement membrane thickness (r = .56, P < .02) and matrix/glomerular volume fraction (r = .57, P < .02) was demonstrated. In a stepwise regression analysis with changes in the matrix/glomerular volume fraction as the dependent variable, serum AGE levels at the start of the study proved to be a significant independent variable (P < .02), whereas the mean hemoglobin A1c (HbA1c) or HbA1c at the start was not. This study shows that serum AGEs predict the progression of early morphological kidney damage during 2.5 years in patients with IDDM.

          Related collections

          Author and article information

          Journal
          Metab. Clin. Exp.
          Metabolism: clinical and experimental
          0026-0495
          0026-0495
          Jun 1997
          : 46
          : 6
          Affiliations
          [1 ] Aker Diabetes Research Centre, Aker University Hospital, Oslo, Norway.
          Article
          9186302
          c10285b1-48a6-43ec-9252-02df9f28f884
          History

          Comments

          Comment on this article