5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New Treatment Addressing the Pathogenesis of Psoriasis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Psoriasis is an immune cell-mediated inflammatory skin disease. The interleukin (IL)23/IL17 axis plays an important role in the development of psoriasis. The effectiveness of biologic treatments such as tumor necrosis factor (TNF)α inhibitors (infliximab, adalimumab, certolizumab pegol), IL23 inhibitors (ustekinumab, guselkumab, tildrakizumab, risankizumab), and IL17 inhibitors (secukinumab, ixekizumab, brodalumab) have verified these findings. Immune-related cells such as dendritic cells (DCs) and macrophages, in addition to Toll-like receptors and cytokines such as interferon (IFN)α, TNFα, IFNɤ, IL12, IL22, IL23, and IL17, are related to the pathogenesis of psoriasis. Here, we first review new insights regarding the pathogenesis of psoriasis, as it relates to DCs, Langerhans cells, macrophages, the signal transducer and activator of transcription 3 pathway, and aryl hydrocarbon receptor in cutaneous vascular endothelial cells. Based on these findings, we summarize currently available oral treatments and biologics. Furthermore, we describe a new treatment option including Janus kinase inhibitor, tyrosine kinase 2 inhibitor, modulator of sphingosine 1-phosphate receptor 1, and Rho-associated kinase 2 inhibitor.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Pathogenesis and clinical features of psoriasis.

          Psoriasis, a papulosquamous skin disease, was originally thought of as a disorder primarily of epidermal keratinocytes, but is now recognised as one of the commonest immune-mediated disorders. Tumour necrosis factor alpha, dendritic cells, and T-cells all contribute substantially to its pathogenesis. In early-onset psoriasis (beginning before age 40 years), carriage of HLA-Cw6 and environmental triggers, such as beta-haemolytic streptococcal infections, are major determinants of disease expression. Moreover, at least nine chromosomal psoriasis susceptibility loci have been identified. Several clinical phenotypes of psoriasis are recognised, with chronic plaque (psoriasis vulgaris) accounting for 90% of cases. Comorbidities of psoriasis are attracting interest, and include impairment of quality of life and associated depressive illness, cardiovascular disease, and a seronegative arthritis known as psoriatic arthritis. A more complete understanding of underlying pathomechanisms is leading to new treatments, which will be discussed in the second part of this Series.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Generation of Pathogenic Th17 Cells in the Absence of TGF-β Signaling

            CD4+ T cells that selectively produce interleukin (IL)-17, are critical for host defense and autoimmunity 1–4 . Crucial for T helper17 (Th17) cells in vivo 5,6 , IL-23 has been thought to be incapable of driving initial differentiation. Rather, IL-6 and transforming growth factor (TGF)-β1 have been argued to be the factors responsible for initiating specification 7–10 . Herein, we show that Th17 differentiation can occur in the absence of TGF-β signaling. Neither IL-6 nor IL-23 alone efficiently generated Th17 cells; however, these cytokines in combination with IL-1β effectively induced IL-17 production in naïve precursors, independently of TGF-β. Epigenetic modification of the Il17a/Il17f and Rorc promoters proceeded without TGF-β1, allowing the generation of cells that co-expressed Rorγt and T-bet. T-bet+ Rorγt+ Th17 cells are generated in vivo during experimental allergic encephalomyelitis (EAE), and adoptively transferred Th17 cells generated with IL-23 without TGF-β1 were pathogenic in this disease model. These data suggest an alternative mode for Th17 differentiation. Consistent with genetic data linking IL23R with autoimmunity, our findings re-emphasize the importance of IL-23 and therefore have may have therapeutic implications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IL-17 and Th17 Cells.

              CD4+ T cells, upon activation and expansion, develop into different T helper cell subsets with different cytokine profiles and distinct effector functions. Until recently, T cells were divided into Th1 or Th2 cells, depending on the cytokines they produce. A third subset of IL-17-producing effector T helper cells, called Th17 cells, has now been discovered and characterized. Here, we summarize the current information on the differentiation and effector functions of the Th17 lineage. Th17 cells produce IL-17, IL-17F, and IL-22, thereby inducing a massive tissue reaction owing to the broad distribution of the IL-17 and IL-22 receptors. Th17 cells also secrete IL-21 to communicate with the cells of the immune system. The differentiation factors (TGF-beta plus IL-6 or IL-21), the growth and stabilization factor (IL-23), and the transcription factors (STAT3, RORgammat, and RORalpha) involved in the development of Th17 cells have just been identified. The participation of TGF-beta in the differentiation of Th17 cells places the Th17 lineage in close relationship with CD4+CD25+Foxp3+ regulatory T cells (Tregs), as TGF-beta also induces differentiation of naive T cells into Foxp3+ Tregs in the peripheral immune compartment. The investigation of the differentiation, effector function, and regulation of Th17 cells has opened up a new framework for understanding T cell differentiation. Furthermore, we now appreciate the importance of Th17 cells in clearing pathogens during host defense reactions and in inducing tissue inflammation in autoimmune disease.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                11 October 2020
                October 2020
                : 21
                : 20
                : 7488
                Affiliations
                Department of Dermatology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; mabuchi@ 123456is.icc.u-tokai.ac.jp
                Author notes
                [* ]Correspondence: tokuyama@ 123456tokai-u.jp
                Article
                ijms-21-07488
                10.3390/ijms21207488
                7589905
                33050592
                c1035315-e4ed-4643-84e2-9c15c28fcd97
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 August 2020
                : 08 October 2020
                Categories
                Review

                Molecular biology
                psoriasis,new treatment,pathogenesis,dendritic cells,janus kinase inhibitor,sphingosine 1-phosphate receptor 1,rho-associated kinase 2 inhibitor,aryl hydrocarbon receptor

                Comments

                Comment on this article