12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      In silico design of epitope-based peptide vaccine against non-typhoidal Salmonella through immunoinformatic approaches

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          UCSF Chimera--a visualization system for exploratory research and analysis.

          The design, implementation, and capabilities of an extensible visualization system, UCSF Chimera, are discussed. Chimera is segmented into a core that provides basic services and visualization, and extensions that provide most higher level functionality. This architecture ensures that the extension mechanism satisfies the demands of outside developers who wish to incorporate new features. Two unusual extensions are presented: Multiscale, which adds the ability to visualize large-scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales. Other extensions include Multalign Viewer, for showing multiple sequence alignments and associated structures; ViewDock, for screening docked ligand orientations; Movie, for replaying molecular dynamics trajectories; and Volume Viewer, for display and analysis of volumetric data. A discussion of the usage of Chimera in real-world situations is given, along with anticipated future directions. Chimera includes full user documentation, is free to academic and nonprofit users, and is available for Microsoft Windows, Linux, Apple Mac OS X, SGI IRIX, and HP Tru64 Unix from http://www.cgl.ucsf.edu/chimera/. Copyright 2004 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments.

            Structure-based virtual screening plays an important role in drug discovery and complements other screening approaches. In general, protein crystal structures are prepared prior to docking in order to add hydrogen atoms, optimize hydrogen bonds, remove atomic clashes, and perform other operations that are not part of the x-ray crystal structure refinement process. In addition, ligands must be prepared to create 3-dimensional geometries, assign proper bond orders, and generate accessible tautomer and ionization states prior to virtual screening. While the prerequisite for proper system preparation is generally accepted in the field, an extensive study of the preparation steps and their effect on virtual screening enrichments has not been performed. In this work, we systematically explore each of the steps involved in preparing a system for virtual screening. We first explore a large number of parameters using the Glide validation set of 36 crystal structures and 1,000 decoys. We then apply a subset of protocols to the DUD database. We show that database enrichment is improved with proper preparation and that neglecting certain steps of the preparation process produces a systematic degradation in enrichments, which can be large for some targets. We provide examples illustrating the structural changes introduced by the preparation that impact database enrichment. While the work presented here was performed with the Protein Preparation Wizard and Glide, the insights and guidance are expected to be generalizable to structure-based virtual screening with other docking methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The global burden of nontyphoidal Salmonella gastroenteritis.

              To estimate the global burden of nontyphoidal Salmonella gastroenteritis, we synthesized existing data from laboratory-based surveillance and special studies, with a hierarchical preference to (1) prospective population-based studies, (2) "multiplier studies," (3) disease notifications, (4) returning traveler data, and (5) extrapolation. We applied incidence estimates to population projections for the 21 Global Burden of Disease regions to calculate regional numbers of cases, which were summed to provide a global number of cases. Uncertainty calculations were performed using Monte Carlo simulation. We estimated that 93.8 million cases (5th to 95th percentile, 61.8-131.6 million) of gastroenteritis due to Salmonella species occur globally each year, with 155,000 deaths (5th to 95th percentile, 39,000-303,000 deaths). Of these, we estimated 80.3 million cases were foodborne. Salmonella infection represents a considerable burden in both developing and developed countries. Efforts to reduce transmission of salmonellae by food and other routes must be implemented on a global scale.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Biomolecular Structure and Dynamics
                Journal of Biomolecular Structure and Dynamics
                Informa UK Limited
                0739-1102
                1538-0254
                July 11 2021
                : 1-19
                Affiliations
                [1 ]Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
                [2 ]Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
                [3 ]Department of Physiology, Dongguk University College of Medicine, Gyeongju, Republic of Korea
                [4 ]Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Republic of Korea
                Article
                10.1080/07391102.2021.1947381
                36529187
                c103c918-57c1-4a2e-b084-dfaef246ec40
                © 2021
                History

                Comments

                Comment on this article