8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mitochondrial localization of estrogen receptor  

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Estrogen receptors (ERs) are believed to be ligand-activated transcription factors belonging to the nuclear receptor superfamily, which on ligand binding translocate into the nucleus and activate gene transcription. To date, two ERs have been identified: ERalpha and ERbeta. ERalpha plays major role in the estrogen-mediated genomic actions in both reproductive and nonreproductive tissue, whereas the function of ERbeta is still unclear. In this study, we used immunocytochemistry, immunoblotting, and proteomics to demonstrate that ERbeta localizes to the mitochondria. In immunocytochemistry studies, ERbeta was detected with two ERbeta antibodies and found to colocalize almost exclusively with a mitochondrial marker in rat primary neuron, primary cardiomyocyte, and a murine hippocampal cell line. The colocalization of ERbeta and mitochondrial markers was identified by both fluorescence and confocal microscopy. No translocation of ERbeta into the nucleus on 17beta-estradiol treatment was seen by using immunocytochemistry. Immunoblotting of purified human heart mitochondria showed an intense signal of ERbeta, whereas no signals for nuclear and other organelle markers were found. Finally, purified human heart mitochondrial proteins were separated by SDS/PAGE. The 50,000-65,000 M(r) band was digested with trypsin and subjected to matrix-assisted laser desorption/ionization mass spectrometric analysis, which revealed seven tryptic fragments that matched with those of ERbeta. In summary, this study demonstrated that ERbeta is localized to mitochondria, suggesting a role for mitochondrial ERbeta in estrogen effects on this important organelle.

          Related collections

          Most cited references 39

          • Record: found
          • Abstract: not found
          • Article: not found

          Cloning of a novel receptor expressed in rat prostate and ovary.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A.

            We have cloned and sequenced the complete complementary DNA of the oestrogen receptor (ER) present in the breast cancer cell line MCF-7. The expression of the ER cDNA in HeLa cells produces a protein that has the same relative molecular mass and binds oestradiol with the same affinity as the MCF-7 ER. There is extensive homology between the ER and the erb-A protein of the oncogenic avian erythroblastosis virus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene.

              Estrogen receptor and its ligand, estradiol, have long been thought to be essential for survival, fertility, and female sexual differentiation and development. Consistent with this proposed crucial role, no human estrogen receptor gene mutations are known, unlike the androgen receptor, where many loss of function mutations have been found. We have generated mutant mice lacking responsiveness to estradiol by disrupting the estrogen receptor gene by gene targeting. Both male and female animals survive to adulthood with normal gross external phenotypes. Females are infertile; males have a decreased fertility. Females have hypoplastic uteri and hyperemic ovaries with no detectable corpora lutea. In adult wild-type and heterozygous females, 3-day estradiol treatment at 40 micrograms/kg stimulates a 3- to 4-fold increase in uterine wet weight and alters vaginal cornification, but the uteri and vagina do not respond in the animals with the estrogen receptor gene disruption. Prenatal male and female reproductive tract development can therefore occur in the absence of estradiol receptor-mediated responsiveness.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 23 2004
                March 23 2004
                March 15 2004
                March 23 2004
                : 101
                : 12
                : 4130-4135
                Article
                10.1073/pnas.0306948101
                384706
                15024130
                © 2004
                Product

                Comments

                Comment on this article