Blog
About

10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:beta-D-Gal(1,4)-D-GlcNAc alpha(1,3)-galactosyltransferase cDNA.

      The Journal of Biological Chemistry

      Amino Acid Sequence, Animals, Base Sequence, Blotting, Southern, DNA, genetics, Galactosyltransferases, Genes, Genomic Library, Humans, Mice, Molecular Sequence Data, Mutation, Oligonucleotide Probes, Polymerase Chain Reaction, Restriction Mapping, Sequence Homology, Nucleic Acid

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have previously isolated a murine UDP-Gal:beta-D-Gal(1,4)-D-GlcNAc alpha(1,3)-galactosyltransferase (alpha(1,3)-GT) cDNA (Larsen, R. D., Rajan, V. P., Ruff, M. M., Kukowska-Latallo, J., Cummings, R. D., and Lowe, J. B. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 8227-8231). This enzyme constructs the terminal alpha(1,3)-galactosyl linkage within the epitope Gal alpha 1----3Gal. This epitope is expressed by New World monkeys and many nonprimate mammals but generally not by Old World primates, anthropoid apes, or man. To investigate the molecular basis for the apparent species-specific absence of this enzyme and its oligosaccharide product, we have sequenced a human genomic DNA fragment homologous to the murine alpha(1,3)-GT cDNA. This fragment contains a 703-nucleotide region that shares 82% identity with a region of the murine cDNA encoding part of the enzyme's catalytic domain. The human sequence, however, has suffered deletion of single nucleotides at two separate positions, relative to the murine sequence. These frameshift mutations disrupt the translational reading frame that would otherwise maintain a 76% amino acid sequence identity between the human sequence and the murine alpha(1,3)-GT. Moreover, nonsense mutations exist within this disrupted reading frame that would truncate the human polypeptide, relative to the murine enzyme. We therefore propose that this human sequence represents a pseudogene and cannot determine expression of Gal alpha 1----3Gal epitopes on human cells.

          Related collections

          Author and article information

          Journal
          2108966

          Comments

          Comment on this article