73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein abundance profiling of the Escherichia coli cytosol

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Knowledge about the abundance of molecular components is an important prerequisite for building quantitative predictive models of cellular behavior. Proteins are central components of these models, since they carry out most of the fundamental processes in the cell. Thus far, protein concentrations have been difficult to measure on a large scale, but proteomic technologies have now advanced to a stage where this information becomes readily accessible.

          Results

          Here, we describe an experimental scheme to maximize the coverage of proteins identified by mass spectrometry of a complex biological sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed emPAI approach which takes into account the number of sequenced peptides per protein. The values of abundance are within a broad range and accurately reflect independently measured copy numbers per cell.

          As expected, the most abundant proteins were those involved in protein synthesis, most notably ribosomal proteins. Proteins involved in energy metabolism as well as those with binding function were also found in high copy number while proteins annotated with the terms metabolism, transcription, transport, and cellular organization were rare. The barrel-sandwich fold was found to be the structural fold with the highest abundance. Highly abundant proteins are predicted to be less prone to aggregation based on their length, pI values, and occurrence patterns of hydrophobic stretches. We also find that abundant proteins tend to be predominantly essential. Additionally we observe a significant correlation between protein and mRNA abundance in E. coli cells.

          Conclusion

          Abundance measurements for more than 1000 E. coli proteins presented in this work represent the most complete study of protein abundance in a bacterial cell so far. We show significant associations between the abundance of a protein and its properties and functions in the cell. In this way, we provide both data and novel insights into the role of protein concentration in this model organism.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.

          Quantitative proteomics has traditionally been performed by two-dimensional gel electrophoresis, but recently, mass spectrometric methods based on stable isotope quantitation have shown great promise for the simultaneous and automated identification and quantitation of complex protein mixtures. Here we describe a method, termed SILAC, for stable isotope labeling by amino acids in cell culture, for the in vivo incorporation of specific amino acids into all mammalian proteins. Mammalian cell lines are grown in media lacking a standard essential amino acid but supplemented with a non-radioactive, isotopically labeled form of that amino acid, in this case deuterated leucine (Leu-d3). We find that growth of cells maintained in these media is no different from growth in normal media as evidenced by cell morphology, doubling time, and ability to differentiate. Complete incorporation of Leu-d3 occurred after five doublings in the cell lines and proteins studied. Protein populations from experimental and control samples are mixed directly after harvesting, and mass spectrometric identification is straightforward as every leucine-containing peptide incorporates either all normal leucine or all Leu-d3. We have applied this technique to the relative quantitation of changes in protein expression during the process of muscle cell differentiation. Proteins that were found to be up-regulated during this process include glyceraldehyde-3-phosphate dehydrogenase, fibronectin, and pyruvate kinase M2. SILAC is a simple, inexpensive, and accurate procedure that can be used as a quantitative proteomic approach in any cell culture system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications.

            P. Sharp, W Li (1987)
            A simple, effective measure of synonymous codon usage bias, the Codon Adaptation Index, is detailed. The index uses a reference set of highly expressed genes from a species to assess the relative merits of each codon, and a score for a gene is calculated from the frequency of use of all codons in that gene. The index assesses the extent to which selection has been effective in moulding the pattern of codon usage. In that respect it is useful for predicting the level of expression of a gene, for assessing the adaptation of viral genes to their hosts, and for making comparisons of codon usage in different organisms. The index may also give an approximate indication of the likely success of heterologous gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm.

              A major challenge in the post-genome era will be determination of the functions of the encoded protein sequences. Since it is generally assumed that the function of a protein is closely linked to its three-dimensional structure, prediction or experimental determination of the library of protein structures is a matter of high priority. However, a large proportion of gene sequences appear to code not for folded, globular proteins, but for long stretches of amino acids that are likely to be either unfolded in solution or adopt non-globular structures of unknown conformation. Characterization of the conformational propensities and function of the non-globular protein sequences represents a major challenge. The high proportion of these sequences in the genomes of all organisms studied to date argues for important, as yet unknown functions, since there could be no other reason for their persistence throughout evolution. Clearly the assumption that a folded three-dimensional structure is necessary for function needs to be re-examined. Although the functions of many proteins are directly related to their three-dimensional structures, numerous proteins that lack intrinsic globular structure under physiological conditions have now been recognized. Such proteins are frequently involved in some of the most important regulatory functions in the cell, and the lack of intrinsic structure in many cases is relieved when the protein binds to its target molecule. The intrinsic lack of structure can confer functional advantages on a protein, including the ability to bind to several different targets. It also allows precise control over the thermodynamics of the binding process and provides a simple mechanism for inducibility by phosphorylation or through interaction with other components of the cellular machinery. Numerous examples of domains that are unstructured in solution but which become structured upon binding to the target have been noted in the areas of cell cycle control and both transcriptional and translational regulation, and unstructured domains are present in proteins that are targeted for rapid destruction. Since such proteins participate in critical cellular control mechanisms, it appears likely that their rapid turnover, aided by their unstructured nature in the unbound state, provides a level of control that allows rapid and accurate responses of the cell to changing environmental conditions. Copyright 1999 Academic Press.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2008
                27 February 2008
                : 9
                : 102
                Affiliations
                [1 ]Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
                [2 ]Center for Experimental BioInformatics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
                [3 ]Department of Genome-Oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, D-85350 Freising, Germany
                [4 ]Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
                [5 ]Department of Cellular Biochemistry, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
                [6 ]Center for Biological Sequence Analysis, BioCentrum, Technical University of Denmark, Kemitorvet 208, DK-1726 Lyngby, Denmark
                [7 ]Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
                [8 ]Institute for Bioinformatics, GSF National Research Center for Environment and Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
                Article
                1471-2164-9-102
                10.1186/1471-2164-9-102
                2292177
                18304323
                c12a4a42-a39b-4e88-8874-4b01cd385d5a
                Copyright © 2008 Ishihama et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 January 2008
                : 27 February 2008
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article