150
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The global nitrogen cycle in the twenty-first century.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Global nitrogen fixation contributes 413 Tg of reactive nitrogen (Nr) to terrestrial and marine ecosystems annually of which anthropogenic activities are responsible for half, 210 Tg N. The majority of the transformations of anthropogenic Nr are on land (240 Tg N yr(-1)) within soils and vegetation where reduced Nr contributes most of the input through the use of fertilizer nitrogen in agriculture. Leakages from the use of fertilizer Nr contribute to nitrate (NO3(-)) in drainage waters from agricultural land and emissions of trace Nr compounds to the atmosphere. Emissions, mainly of ammonia (NH3) from land together with combustion related emissions of nitrogen oxides (NOx), contribute 100 Tg N yr(-1) to the atmosphere, which are transported between countries and processed within the atmosphere, generating secondary pollutants, including ozone and other photochemical oxidants and aerosols, especially ammonium nitrate (NH4NO3) and ammonium sulfate (NH4)2SO4. Leaching and riverine transport of NO3 contribute 40-70 Tg N yr(-1) to coastal waters and the open ocean, which together with the 30 Tg input to oceans from atmospheric deposition combine with marine biological nitrogen fixation (140 Tg N yr(-1)) to double the ocean processing of Nr. Some of the marine Nr is buried in sediments, the remainder being denitrified back to the atmosphere as N2 or N2O. The marine processing is of a similar magnitude to that in terrestrial soils and vegetation, but has a larger fraction of natural origin. The lifetime of Nr in the atmosphere, with the exception of N2O, is only a few weeks, while in terrestrial ecosystems, with the exception of peatlands (where it can be 10(2)-10(3) years), the lifetime is a few decades. In the ocean, the lifetime of Nr is less well known but seems to be longer than in terrestrial ecosystems and may represent an important long-term source of N2O that will respond very slowly to control measures on the sources of Nr from which it is produced.

          Related collections

          Author and article information

          Journal
          Philos Trans R Soc Lond B Biol Sci
          Philosophical transactions of the Royal Society of London. Series B, Biological sciences
          The Royal Society
          1471-2970
          0962-8436
          Jul 05 2013
          : 368
          : 1621
          Affiliations
          [1 ] NERC Centre for Ecology and Hydrology, Penicuik, UK. dfo@ceh.ac.uk
          Article
          rstb.2013.0164
          10.1098/rstb.2013.0164
          3682748
          23713126
          c12c0f14-7df6-478c-85b6-1d8e40c89df5
          History

          denitrification,deposition,emissions,global budgets,nitrogen fixation

          Comments

          Comment on this article