49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Memory is the capacity to store, maintain, and retrieve events or information from the mind. Difficulties in verbal episodic memory commonly occur in healthy aging. In this paper, we assess the hypothesis that anodal transcranial direct current stimulation (tDCS) applied over the dorsolateral prefrontal cortex (DLPFC) or over the parietal cortex (PARC) could facilitate verbal episodic memory in a group of 32 healthy older adults and in a group of 32 young subjects relative to a sham stimulation using a single-blind randomized controlled design. Each participant underwent two sessions of anodal tDCS (left and right) and one session of sham stimulation. Overall, our results demonstrated that, in young and in older subjects, anodal tDCS applied during the retrieval phase facilitates verbal episodic memory. In particular, we found that tDCS applied over the left and right regions (DLPFC and PARC) induced better performance in young participants; only tDCS applied over the left regions (DLPFC and PARC) increased retrieval in older subjects. These results suggest that anodal tDCS can be a relevant tool to modulate the long-term episodic memory capacities of young and older subjects.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.

          In this paper we demonstrate in the intact human the possibility of a non-invasive modulation of motor cortex excitability by the application of weak direct current through the scalp. Excitability changes of up to 40 %, revealed by transcranial magnetic stimulation, were accomplished and lasted for several minutes after the end of current stimulation. Excitation could be achieved selectively by anodal stimulation, and inhibition by cathodal stimulation. By varying the current intensity and duration, the strength and duration of the after-effects could be controlled. The effects were probably induced by modification of membrane polarisation. Functional alterations related to post-tetanic potentiation, short-term potentiation and processes similar to postexcitatory central inhibition are the likely candidates for the excitability changes after the end of stimulation. Transcranial electrical stimulation using weak current may thus be a promising tool to modulate cerebral excitability in a non-invasive, painless, reversible, selective and focal way.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hemispheric asymmetry reduction in older adults: the HAROLD model.

            A model of the effects of aging on brain activity during cognitive performance is introduced. The model is called HAROLD (hemispheric asymmetry reduction in older adults), and it states that, under similar circumstances, prefrontal activity during cognitive performances tends to be less lateralized in older adults than in younger adults. The model is supported by functional neuroimaging and other evidence in the domains of episodic memory, semantic memory, working memory, perception, and inhibitory control. Age-related hemispheric asymmetry reductions may have a compensatory function or they may reflect a dedifferentiation process. They may have a cognitive or neural origin, and they may reflect regional or network mechanisms. The HAROLD model is a cognitive neuroscience model that integrates ideas and findings from psychology and neuroscience of aging.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The parietal cortex and episodic memory: an attentional account.

              The contribution of the parietal cortex to episodic memory is a fascinating scientific puzzle. On the one hand, parietal lesions do not normally yield severe episodic-memory deficits; on the other hand, parietal activations are seen frequently in functional-neuroimaging studies of episodic memory. A review of these two categories of evidence suggests that the answer to the puzzle requires us to distinguish between the contributions of dorsal and ventral parietal regions and between the influence of top-down and bottom-up attention on memory.
                Bookmark

                Author and article information

                Journal
                Front Aging Neurosci
                Front Aging Neurosci
                Front. Aging Neurosci.
                Frontiers in Aging Neuroscience
                Frontiers Media S.A.
                1663-4365
                11 September 2013
                2013
                : 5
                : 49
                Affiliations
                [1] 1Istituto di Ricovero e Cura a Carattere Scientifico Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
                [2] 2Center for Cognitive Science, Department of Psychology, University of Turin Turin, Italy
                Author notes

                Edited by: Hari S. Sharma, Uppsala University, Sweden

                Reviewed by: Catarina Oliveira, University of Coimbra, Portugal; Giovanni Tosi, University of Modena and Reggio Emilia, Italy

                *Correspondence: Maria Cotelli, Istituto di Ricovero e Cura a Carattere Scientifico Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy e-mail: mcotelli@ 123456fatebenefratelli.it

                This article was submitted to the journal Frontiers in Aging Neuroscience.

                Article
                10.3389/fnagi.2013.00049
                3769624
                24062685
                c130403e-27dd-4ca1-9b1c-cc30fbdb8b21
                Copyright © Manenti, Brambilla, Petesi, Ferrari and Cotelli.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 August 2013
                : 22 August 2013
                Page count
                Figures: 3, Tables: 3, Equations: 0, References: 77, Pages: 9, Words: 0
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                tdcs,aging,verbal retrieval,dorsolateral prefrontal cortex,parietal cortex
                Neurosciences
                tdcs, aging, verbal retrieval, dorsolateral prefrontal cortex, parietal cortex

                Comments

                Comment on this article