12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antibiotic resistance and mecA characterization of coagulase-negative staphylococci isolated from three hotels in London, UK

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antibiotic resistance in bacteria isolated from non-healthcare environments, is a potential problem to public health. In our survey a total of 71 coagulase negative staphylococci (CNS) belonging to 11 different species were isolated from three large hotels in London, UK. The most prevalent species was Staphylococcus haemolyticus, with S. hominis, S. warneri, S. cohnii, and Staphylococcus epidermidis commonly detected. Antimicrobial susceptibilities and carriage of the mecA gene were determined for all of these isolates. Most (85.9%) staphylococci were resistant to multiple antibiotics with all displaying increased susceptibility toward penicillin, fusidic acid, erythromycin, and cefepime. Twenty-one (29.5%) of the isolates were mecA positive, however MIC values to oxacillin, normally associated with the carriage of mecA, varied widely in this group (from 0.06 to 256 mg/L). Fifteen of the twenty-one mecA positive isolates carried SCC mec of these seven were type V, one type I, one type II, and one type IV. Additionally, five of these 15 isolates carried a previously unreported type, 1A, which involves an association between class A mec complex and ccr type 1. The remaining six of the 21 isolates were non-typeable and carried a combination of class A mec complex and ccrC. In addition to this, we also report on new MLST types which were assigned for five S. epidermidis isolates. Four out of these five isolates had MICs between 0.06 and 256 mg/L to oxacillin and would be regarded as clinically susceptible but one isolate had a high oxacillin MIC of 256 mg/L. We demonstrated widespread multiple drug resistance among different staphylococcal species isolated from non-healthcare environments highlighting the potential for these species to act as a reservoir for methicillin and other forms of drug resistance.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Update to the multiplex PCR strategy for assignment of mec element types in Staphylococcus aureus.

            Staphylococcal cassette chromosome mec (SCCmec) typing is important for the identification and definition of methicillin-resistant Staphylococcus aureus clones, and for routine purposes, multiplex PCR assays are the most adequate for SCCmec typing. Here, we describe an update to the multiplex PCR strategy for SCCmec typing that we described in 2002 so that SCCmec types IV and V may be properly identified.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Detection of staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecI, mecR1, blaZ, and ccr genes in human clinical isolates of clonal complex 130 methicillin-resistant Staphylococcus aureus.

              Methicillin resistance in staphylococci is mediated by penicillin binding protein 2a (PBP 2a), encoded by mecA on mobile staphylococcal cassette chromosome mec (SCCmec) elements. In this study, two clonal complex 130 (CC130) methicillin-resistant Staphylococcus aureus (MRSA) isolates from patients in Irish hospitals were identified that were phenotypically PBP 2a positive but lacked mecA by conventional PCR and by DNA microarray screening. The isolates were identified as methicillin-susceptible S. aureus using the GeneXpert real-time PCR assay. Whole-genome sequencing of one isolate (M10/0061) revealed a 30-kb SCCmec element encoding a class E mec complex with highly divergent blaZ-mecA-mecR1-mecI, a type 8 cassette chromosome recombinase (ccr) complex consisting of ccrA1-ccrB3, an arsenic resistance operon, and flanking direct repeats (DRs). The SCCmec element was almost identical to that of SCCmec type XI (SCCmec XI) identified by the Sanger Institute in sequence type 425 bovine MRSA strain LGA251 listed on the website of the International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements. The open reading frames (ORFs) identified within SCCmec XI of M10/0061 exhibited 21 to 93% amino acid identity to ORFs in GenBank. A third DR was identified ca. 3 kb downstream of SCCmec XI, indicating the presence of a possible SCC remnant. SCCmec XI was also identified in the second CC130 MRSA isolate by PCR and sequencing. The CC130 MRSA isolates may be of animal origin as previously reported CC130 S. aureus strains were predominantly from bovine sources. The highly divergent nature of SCCmec XI relative to other SCCmec elements indicates that it may have originated in another taxon.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                09 September 2015
                2015
                : 6
                : 947
                Affiliations
                School of Biological and Chemical Sciences, Queen Mary University of London London, UK
                Author notes

                Edited by: José Luis Capelo, Universidade Nova de Lisboa, Portugal

                Reviewed by: Daniela Ceccarelli, University of Maryland, USA; Abhishek Saxena, TERI University, India

                *Correspondence: Hermine V. Mkrtchyan and Ronald R. Cutler, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK h.mkrtchyan@ 123456qmul.ac.uk ; r.cutler@ 123456qmul.ac.uk

                This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2015.00947
                4563241
                25713560
                c1340e8b-641d-4f95-93e3-fb2cfa14a448
                Copyright © 2015 Xu, Mkrtchyan and Cutler.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 June 2015
                : 27 August 2015
                Page count
                Figures: 0, Tables: 2, Equations: 0, References: 27, Pages: 6, Words: 5145
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                antibiotic resistance,coagulase-negative staphylococci,meca gene,sccmec typing,mlst

                Comments

                Comment on this article