9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      2-Oxoglutarate-dependent dioxygenases in cancer

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references252

          • Record: found
          • Abstract: found
          • Article: found

          Chronic inflammation in the etiology of disease across the life span

          Although intermittent increases in inflammation are critical for survival during physical injury and infection, recent research has revealed that certain social, environmental and lifestyle factors can promote systemic chronic inflammation (SCI) that can, in turn, lead to several diseases that collectively represent the leading causes of disability and mortality worldwide, such as cardiovascular disease, cancer, diabetes mellitus, chronic kidney disease, non-alcoholic fatty liver disease and autoimmune and neurodegenerative disorders. In the present Perspective we describe the multi-level mechanisms underlying SCI and several risk factors that promote this health-damaging phenotype, including infections, physical inactivity, poor diet, environmental and industrial toxicants and psychological stress. Furthermore, we suggest potential strategies for advancing the early diagnosis, prevention and treatment of SCI.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammation and Cancer: Triggers, Mechanisms, and Consequences

            Inflammation predisposes to the development of cancer and promotes all stages of tumorigenesis. Cancer cells as well as surrounding stromal and inflammatory cells engage in well-orchestrated reciprocal interactions to form an inflammatory tumor microenvironment (TME). Cells within the TME are highly plastic, continuously changing their phenotypic and functional characteristics. Here we review the origins of inflammation in tumors, and the mechanisms whereby inflammation drives tumor initiation, growth, progression and metastasis. We discuss how tumor promoting inflammation closely resembles inflammatory processes typically found during development, immunity, maintenance of tissue homeostasis or tissue repair, and illuminate the distinctions between tissue-protective and pro-tumorigenic inflammation, including spatio-temporal considerations. Defining the cornerstone rules of engagement governing molecular and cellular mechanisms of tumor-promoting inflammation will be essential for the further development of anti-cancer therapies. Grivennikov and Greten review the mechanisms underlying the initiation of pro-tumorigenic inflammatory responses, how these evolve throughout the different stages of tumor development and the plasticity of the cells within the tumor microenvironment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.

              DNA cytosine methylation is crucial for retrotransposon silencing and mammalian development. In a computational search for enzymes that could modify 5-methylcytosine (5mC), we identified TET proteins as mammalian homologs of the trypanosome proteins JBP1 and JBP2, which have been proposed to oxidize the 5-methyl group of thymine. We show here that TET1, a fusion partner of the MLL gene in acute myeloid leukemia, is a 2-oxoglutarate (2OG)- and Fe(II)-dependent enzyme that catalyzes conversion of 5mC to 5-hydroxymethylcytosine (hmC) in cultured cells and in vitro. hmC is present in the genome of mouse embryonic stem cells, and hmC levels decrease upon RNA interference-mediated depletion of TET1. Thus, TET proteins have potential roles in epigenetic regulation through modification of 5mC to hmC.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Nature Reviews Cancer
                Nat Rev Cancer
                Springer Science and Business Media LLC
                1474-175X
                1474-1768
                October 21 2020
                Article
                10.1038/s41568-020-00303-3
                33087883
                c13b69df-7e50-4ee1-b5ff-7c3584257200
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article