36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New Penicillium and Talaromyces species from honey, pollen and nests of stingless bees

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Penicillium and Talaromyces species have a worldwide distribution and are isolated from various materials and hosts, including insects and their substrates. The aim of this study was to characterize the Penicillium and Talaromyces species obtained during a survey of honey, pollen and the inside of nests of Melipona scutellaris. A total of 100 isolates were obtained during the survey and 82% of those strains belonged to Penicillium and 18% to Talaromyces. Identification of these isolates was performed based on phenotypic characters and β-tubulin and ITS sequencing. Twenty-one species were identified in Penicillium and six in Talaromyces, including seven new species. These new species were studied in detail using a polyphasic approach combining phenotypic, molecular and extrolite data. The four new Penicillium species belong to sections Sclerotiora ( Penicillium fernandesiae sp. nov., Penicillium mellis sp. nov., Penicillium meliponae sp. nov.) and Gracilenta ( Penicillium apimei sp. nov.) and the three new Talaromyces species to sections Helici ( Talaromyces pigmentosus sp. nov.), Talaromyces ( Talaromyces mycothecae sp. nov.) and Trachyspermi ( Talaromyces brasiliensis sp. nov.). The invalidly described species Penicillium echinulonalgiovense sp. nov. was also isolated during the survey and this species is validated here.

          Electronic supplementary material

          The online version of this article (10.1007/s10482-018-1081-1) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Identification and nomenclature of the genus Penicillium

          Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens. Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept of Penicillium was re-defined to accommodate species from other genera, such as Chromocleista, Eladia, Eupenicillium, Torulomyces and Thysanophora, which together comprise a large monophyletic clade. As a result of this, and the many new species described in recent years, it was necessary to update the list of accepted species in Penicillium. The genus currently contains 354 accepted species, including new combinations for Aspergillus crystallinus, A. malodoratus and A. paradoxus, which belong to Penicillium section Paradoxa. To add to the taxonomic value of the list, we also provide information on each accepted species MycoBank number, living ex-type strains and provide GenBank accession numbers to ITS, β-tubulin, calmodulin and RPB2 sequences, thereby supplying a verified set of sequences for each species of the genus. In addition to the nomenclatural list, we recommend a standard working method for species descriptions and identifications to be adopted by laboratories working on this genus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Phylogeny of Penicillium and the segregation of Trichocomaceae into three families

            Species of Trichocomaceae occur commonly and are important to both industry and medicine. They are associated with food spoilage and mycotoxin production and can occur in the indoor environment, causing health hazards by the formation of β-glucans, mycotoxins and surface proteins. Some species are opportunistic pathogens, while others are exploited in biotechnology for the production of enzymes, antibiotics and other products. Penicillium belongs phylogenetically to Trichocomaceae and more than 250 species are currently accepted in this genus. In this study, we investigated the relationship of Penicillium to other genera of Trichocomaceae and studied in detail the phylogeny of the genus itself. In order to study these relationships, partial RPB1, RPB2 (RNA polymerase II genes), Tsr1 (putative ribosome biogenesis protein) and Cct8 (putative chaperonin complex component TCP-1) gene sequences were obtained. The Trichocomaceae are divided in three separate families: Aspergillaceae, Thermoascaceae and Trichocomaceae. The Aspergillaceae are characterised by the formation flask-shaped or cylindrical phialides, asci produced inside cleistothecia or surrounded by Hülle cells and mainly ascospores with a furrow or slit, while the Trichocomaceae are defined by the formation of lanceolate phialides, asci borne within a tuft or layer of loose hyphae and ascospores lacking a slit. Thermoascus and Paecilomyces, both members of Thermoascaceae, also form ascospores lacking a furrow or slit, but are differentiated from Trichocomaceae by the production of asci from croziers and their thermotolerant or thermophilic nature. Phylogenetic analysis shows that Penicillium is polyphyletic. The genus is re-defined and a monophyletic genus for both anamorphs and teleomorphs is created (Penicillium sensu stricto). The genera Thysanophora, Eupenicillium, Chromocleista, Hemicarpenteles and Torulomyces belong in Penicillium s. str. and new combinations for the species belonging to these genera are proposed. Analysis of Penicillium below genus rank revealed the presence of 25 clades. A new classification system including both anamorph and teleomorph species is proposed and these 25 clades are treated here as sections. An overview of species belonging to each section is presented. Taxonomic novelties: New sections, all in Penicillium: sect. Sclerotiora Houbraken & Samson, sect. Charlesia Houbraken & Samson, sect. Thysanophora Houbraken & Samson,sect. Ochrosalmonea Houbraken & Samson, sect. Cinnamopurpurea Houbraken & Samson, Fracta Houbraken & Samson, sect. Stolkia Houbraken & Samson, sect. Gracilenta Houbraken & Samson, sect. Citrina Houbraken & Samson, sect. Turbata Houbraken & Samson, sect. Paradoxa Houbraken & Samson, sect. Canescentia Houbraken & Samson. New combinations: Penicillium asymmetricum (Subramanian & Sudha) Houbraken & Samson, P. bovifimosum (Tuthill & Frisvad) Houbraken & Samson, P. glaucoalbidum (Desmazières) Houbraken & Samson, P. laeve (K. Ando & Manoch) Houbraken & Samson, P. longisporum (Kendrick) Houbraken & Samson, P. malachiteum (Yaguchi & Udagawa) Houbraken & Samson, P. ovatum (K. Ando & Nawawi) Houbraken & Samson, P. parviverrucosum (K. Ando & Pitt) Houbraken & Samson, P. saturniforme (Wang & Zhuang) Houbraken & Samson, P. taiwanense (Matsushima) Houbraken & Samson. New names: Penicillium coniferophilum Houbraken & Samson, P. hennebertii Houbraken & Samson, P. melanostipe Houbraken & Samson, P. porphyreum Houbraken & Samson.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Polyphasic taxonomy of the genus Talaromyces

              The genus Talaromyces was described by Benjamin in 1955 as a sexual state of Penicillium that produces soft walled ascomata covered with interwoven hyphae. Phylogenetic information revealed that Penicillium subgenus Biverticillium and Talaromyces form a monophyletic clade distinct from the other Penicillium subgenera. Subsequently, in combination with the recent adoption of the one fungus one name concept, Penicillium subgenus Biverticillium was transferred to Talaromyces. At the time, the new combinations were made based only on phylogenetic information. As such, the aim of this study was to provide a monograph on Talaromyces applying a polyphasic species concept, including morphological, molecular and physiological characters. Based on an ITS, BenA and RPB2 multigene phylogeny, we propose a new sectional classification for the genus, placing the 88 accepted species into seven sections, named sections Bacillispori, Helici, Islandici, Purpurei, Subinflati, Talaromyces and Trachyspermi. We provide morphological descriptions for each of these species, as well as notes on their identification using morphology and DNA sequences. For molecular identification, BenA is proposed as a secondary molecular marker to the accepted ITS barcode for fungi.
                Bookmark

                Author and article information

                Contributors
                +31 (0)30-2122600 , j.houbraken@westerdijkinstitute.nl
                Journal
                Antonie Van Leeuwenhoek
                Antonie Van Leeuwenhoek
                Antonie Van Leeuwenhoek
                Springer International Publishing (Cham )
                0003-6072
                1572-9699
                13 April 2018
                13 April 2018
                2018
                : 111
                : 10
                : 1883-1912
                Affiliations
                [1 ]ISNI 0000 0004 0368 8584, GRID grid.418704.e, Westerdijk Fungal Biodiversity Institute, ; Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
                [2 ]ISNI 0000 0001 0670 7996, GRID grid.411227.3, Departamento de Micologia Prof. Chaves Batista, , Universidade Federal de Pernambuco, ; Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901 Recife, PE Brazil
                [3 ]ISNI 0000 0001 2181 8870, GRID grid.5170.3, Department of Biotechnology and Biomedicine, , Technical University of Denmark, ; 2800 Kongens Lyngby, Denmark
                Author information
                http://orcid.org/0000-0003-4893-4438
                Article
                1081
                10.1007/s10482-018-1081-1
                6153986
                29654567
                c1420317-924c-420f-986a-da67e8256f1f
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 15 January 2018
                : 31 March 2018
                Funding
                Funded by: National Council for Scientific and Technological Development (CNPq)
                Award ID: Process 201478/2015-3 – SWE
                Award Recipient :
                Funded by: Coordination for the Improvement of Higher Education Personnel (CAPES)
                Award ID: Renan Barbosa
                Award Recipient :
                Categories
                Original Paper
                Custom metadata
                © Springer Nature Switzerland AG 2018

                Microbiology & Virology
                8 new taxa,aspergillaceae,fungal ecology,polyphasic approach,taxonomy,trichocomaceae

                Comments

                Comment on this article