22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cerebrospinal Fluid Mechanics and Its Coupling to Cerebrovascular Dynamics

      , , ,
      Annual Review of Fluid Mechanics
      Annual Reviews

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references193

          • Record: found
          • Abstract: found
          • Article: not found

          Glial regulation of the cerebral microvasculature.

          The brain is a heterogeneous organ with regionally varied and constantly changing energetic needs. Blood vessels in the brain are equipped with control mechanisms that match oxygen and glucose delivery through blood flow with the local metabolic demands that are imposed by neural activity. However, the cellular bases of this mechanism have remained elusive. A major advance has been the demonstration that astrocytes, cells with extensive contacts with both synapses and cerebral blood vessels, participate in the increases in flow evoked by synaptic activity. Their organization in nonoverlapping spatial domains indicates that they are uniquely positioned to shape the spatial distribution of the vascular responses that are evoked by neural activity. Astrocytic calcium is an important determinant of microvascular function and may regulate flow independently of synaptic activity. The involvement of astrocytes in neurovascular coupling has broad implications for the interpretation of functional imaging signals and for the understanding of brain diseases that are associated with neurovascular dysfunction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New roles for astrocytes: redefining the functional architecture of the brain.

            Astrocytes have traditionally been considered ancillary, satellite cells of the nervous system. However, work over the past decade has revealed that they interact with the vasculature to form a gliovascular network that might organize not only the structural architecture of the brain but also its communication pathways, activation, thresholds and plasticity. The net effect is that astroglia demarcate gray matter regions, both cortical and subcortical, into functional compartments whose internal activation thresholds and external outputs are regulated by single glial cells. The array of these astrocyte-delimited microdomains along the capillary microvasculature allows the formation of higher-order gliovascular units, which serve to match local neural activity and blood flow while regulating neuronal firing thresholds through coordinative glial signaling. By these means, astrocytes might establish the functional as well as the structural architecture of the adult brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence

              Interstitial fluid (ISF) surrounds the parenchymal cells of the brain and spinal cord while cerebrospinal fluid (CSF) fills the larger spaces within and around the CNS. Regulation of the composition and volume of these fluids is important for effective functioning of brain cells and is achieved by barriers that prevent free exchange between CNS and blood and by mechanisms that secrete fluid of controlled composition into the brain and distribute and reabsorb it. Structures associated with this regular fluid turnover include the choroid plexuses, brain capillaries comprising the blood-brain barrier, arachnoid villi and perineural spaces penetrating the cribriform plate. ISF flow, estimated from rates of removal of markers from the brain, has been thought to reflect rates of fluid secretion across the blood-brain barrier, although this has been questioned because measurements were made under barbiturate anaesthesia possibly affecting secretion and flow and because CSF influx to the parenchyma via perivascular routes may deliver fluid independently of blood-brain barrier secretion. Fluid secretion at the blood-brain barrier is provided by specific transporters that generate solute fluxes so creating osmotic gradients that force water to follow. Any flow due to hydrostatic pressures driving water across the barrier soon ceases unless accompanied by solute transport because water movements modify solute concentrations. CSF is thought to be derived primarily from secretion by the choroid plexuses. Flow rates measured using phase contrast magnetic resonance imaging reveal CSF movements to be more rapid and variable than previously supposed, even implying that under some circumstances net flow through the cerebral aqueduct may be reversed with net flow into the third and lateral ventricles. Such reversed flow requires there to be alternative sites for both generation and removal of CSF. Fluorescent tracer analysis has shown that fluid flow can occur from CSF into parenchyma along periarterial spaces. Whether this represents net fluid flow and whether there is subsequent flow through the interstitium and net flow out of the cortex via perivenous routes, described as glymphatic circulation, remains to be established. Modern techniques have revealed complex fluid movements within the brain. This review provides a critical evaluation of the data.
                Bookmark

                Author and article information

                Journal
                Annual Review of Fluid Mechanics
                Annu. Rev. Fluid Mech.
                Annual Reviews
                0066-4189
                1545-4479
                January 03 2016
                January 03 2016
                : 48
                : 1
                : 219-257
                Article
                10.1146/annurev-fluid-122414-034321
                c1484d54-1eb6-4e09-ad2f-da41f972260b
                © 2016
                History

                Comments

                Comment on this article