13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion.

      Nature genetics
      Alleles, Animals, Cell Differentiation, genetics, Embryonic and Fetal Development, Gene Deletion, Heterozygote, Homozygote, Humans, Huntington Disease, pathology, Male, Mice, Mice, Mutant Strains, Mice, Transgenic, Mutagenesis, Insertional, Nerve Tissue Proteins, metabolism, Nuclear Proteins, Phenotype, Repetitive Sequences, Nucleic Acid

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a CAG repeat expansion that lengthens a glutamine segment in the novel huntingtin protein. To elucidate the molecular basis of HD, we extended the polyglutamine tract of the mouse homologue, Hdh, by targetted introduction of an expanded human HD CAG repeat, creating mutant HdhneoQ50 and HdhQ50 alleles that express reduced and wild-type levels of altered huntingtin, respectively. Mice homozygous for reduced levels displayed characteristic aberrant brain development and perinatal lethality, indicating a critical function for Hdh in neurogenesis. However, mice with normal levels of mutant huntingtin did not display these abnormalities, indicating that the expanded CAG repeat does not eliminate or detectably impair huntingtin's neurogenic function. Thus, the HD defect in man does not mimic complete or partial Hdh inactivation and appears to cause neurodegenerative disease by a gain-of-function mechanism.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue.

          The expansion of CAG triplet repeats in the translated region of the human HD gene, encoding a protein (huntingtin) of unknown function, is a dominant mutation leading to manifestation of Huntington's disease. Targeted disruption of the homologous mouse gene (Hdh), to examine the normal role of huntingtin, shows that this protein is functionally indispensable, since nullizygous embryos become developmentally retarded and disorganized, and die between days 8.5 and 10.5 of gestation. Based on the observation that the level of the regionalized apoptotic cell death in the embryonic ectoderm, a layer expressing the Hdh gene, is much higher than normal in the null mutants, we propose that huntingtin is involved in processes counterbalancing the operation of an apoptotic pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inactivation of the mouse Huntington's disease gene homolog Hdh.

            Huntington's disease (HD) is a dominant neurodegenerative disorder caused by expansion of a CAG repeat in the gene encoding huntingtin, a protein of unknown function. To distinguish between "loss of function" and "gain of function" models of HD, the murine HD homolog Hdh was inactivated by gene targeting. Mice heterozygous for Hdh inactivation were phenotypically normal, whereas homozygosity resulted in embryonic death. Homozygotes displayed abnormal gastrulation at embryonic day 7.5 and were resorbing by day 8.5. Thus, huntingtin is critical early in embryonic development, before the emergence of the nervous system. That Hdh inactivation does not mimic adult HD neuropathology suggests that the human disease involves a gain of function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons.

              The gene defective in Huntington's disease encodes a protein, huntingtin, with unknown function. Antisera generated against three separate regions of huntingtin identified a single high molecular weight protein of approximately 320 kDa on immunoblots of human neuroblastoma extracts. The same protein species was detected in human and rat cortex synaptosomes and in sucrose density gradients of vesicle-enriched fractions, where huntingtin immunoreactivity overlapped with the distribution of vesicle membrane proteins (SV2, transferrin receptor, and synaptophysin). Immunohistochemistry in human and rat brain revealed widespread cytoplasmic labeling of huntingtin within neurons, particularly cell bodies and dendrites, rather than the more selective pattern of axon terminal labeling characteristic of many vesicle-associated proteins. At the ultrastructural level, immunoreactivity in cortical neurons was detected in the matrix of the cytoplasm and around the membranes of the vesicles. The ubiquitous cytoplasmic distribution of huntingtin in neurons and its association with vesicles suggest that huntingtin may have a role in vesicle trafficking.
                Bookmark

                Author and article information

                Comments

                Comment on this article