55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Medium- and short-chain dehydrogenase/reductase gene and protein families : The MDR superfamily

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract.

          The MDR superfamily with ~350-residue subunits contains the classical liver alcohol dehydrogenase (ADH), quinone reductase, leukotriene B4 dehydrogenase and many more forms. ADH is a dimeric zinc metalloprotein and occurs as five different classes in humans, resulting from gene duplications during vertebrate evolution, the first one traced to ~500 MYA (million years ago) from an ancestral formaldehyde dehydrogenase line. Like many duplications at that time, it correlates with enzymogenesis of new activities, contributing to conditions for emergence of vertebrate land life from osseous fish. The speed of changes correlates with function, as do differential evolutionary patterns in separate segments. Subsequent recognitions now define at least 40 human MDR members in the Uniprot database (corresponding to 25 genes when excluding close homologues), and in all species at least 10888 entries. Overall, variability is large, but like for many dehydrogenases, subdivided into constant and variable forms, corresponding to household and emerging enzyme activities, respectively. This review covers basic facts and describes eight large MDR families and nine smaller families. Combined, they have specific substrates in metabolic pathways, some with wide substrate specificity, and several with little known functions.

          Electronic supplementary material

          Supplementary material is available in the online version of this article at springerlink.com (doi:10.1007/s00018-008-8587-z) and is accessible for authorized users.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          The Pfam protein families database.

          Pfam is a large collection of protein families and domains. Over the past 2 years the number of families in Pfam has doubled and now stands at 6190 (version 10.0). Methodology improvements for searching the Pfam collection locally as well as via the web are described. Other recent innovations include modelling of discontinuous domains allowing Pfam domain definitions to be closer to those found in structure databases. Pfam is available on the web in the UK (http://www.sanger.ac.uk/Software/Pfam/), the USA (http://pfam.wustl.edu/), France (http://pfam.jouy.inra.fr/) and Sweden (http://Pfam.cgb.ki.se/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Database resources of the National Center for Biotechnology Information

            In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data available through NCBI's web site. NCBI resources include Entrez, the Entrez Programming Utilities, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genome, Genome Project and related tools, the Trace, Assembly, and Short Read Archives, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups, Influenza Viral Resources, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Database of Genotype and Phenotype, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool and the PubChem suite of small molecule databases. Augmenting the web applications are custom implementations of the BLAST program optimized to search specialized data sets. These resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The 1.2-megabase genome sequence of Mimivirus.

              We recently reported the discovery and preliminary characterization of Mimivirus, the largest known virus, with a 400-nanometer particle size comparable to mycoplasma. Mimivirus is a double-stranded DNA virus growing in amoebae. We now present its 1,181,404-base pair genome sequence, consisting of 1262 putative open reading frames, 10% of which exhibit a similarity to proteins of known functions. In addition to exceptional genome size, Mimivirus exhibits many features that distinguish it from other nucleocytoplasmic large DNA viruses. The most unexpected is the presence of numerous genes encoding central protein-translation components, including four amino-acyl transfer RNA synthetases, peptide release factor 1, translation elongation factor EF-TU, and translation initiation factor 1. The genome also exhibits six tRNAs. Other notable features include the presence of both type I and type II topoisomerases, components of all DNA repair pathways, many polysaccharide synthesis enzymes, and one intein-containing gene. The size and complexity of the Mimivirus genome challenge the established frontier between viruses and parasitic cellular organisms. This new sequence data might help shed a new light on the origin of DNA viruses and their role in the early evolution of eukaryotes.
                Bookmark

                Author and article information

                Contributors
                +46 13 137 568 , bpn@ifm.liu.se
                Journal
                Cell Mol Life Sci
                Cellular and Molecular Life Sciences
                Birkhäuser-Verlag (Basel )
                1420-682X
                1420-9071
                14 November 2008
                December 2008
                : 65
                : 24
                : 3879-3894
                Affiliations
                [1 ]IFM Bioinformatics, Linköping University, 581 83 Linköping, Sweden
                [2 ]Dept of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
                [3 ]Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
                Article
                8587
                10.1007/s00018-008-8587-z
                2792335
                19011751
                c14d6661-0886-4306-8afb-c4842264c237
                © Birkhäuser Verlag, Basel 2008
                History
                Categories
                Multi-Author Review
                Custom metadata
                © Birkhäuser Verlag Basel/Switzerland 2008

                Molecular biology
                evolution,dehydrogenases,reductases,enzyme superfamily,bioinformatics
                Molecular biology
                evolution, dehydrogenases, reductases, enzyme superfamily, bioinformatics

                Comments

                Comment on this article