Blog
About

21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Colorectal Cancer Screening: Recommendations for Physicians and Patients from the U.S. Multi-Society Task Force on Colorectal Cancer.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This document updates the colorectal cancer (CRC) screening recommendations of the U.S. Multi-Society Task Force of Colorectal Cancer (MSTF), which represents the American College of Gastroenterology, the American Gastroenterological Association, and The American Society for Gastrointestinal Endoscopy. CRC screening tests are ranked in 3 tiers based on performance features, costs, and practical considerations. The first-tier tests are colonoscopy every 10 years and annual fecal immunochemical test (FIT). Colonoscopy and FIT are recommended as the cornerstones of screening regardless of how screening is offered. Thus, in a sequential approach based on colonoscopy offered first, FIT should be offered to patients who decline colonoscopy. Colonoscopy and FIT are recommended as tests of choice when multiple options are presented as alternatives. A risk-stratified approach is also appropriate, with FIT screening in populations with an estimated low prevalence of advanced neoplasia and colonoscopy screening in high prevalence populations. The second-tier tests include CT colonography every 5 years, the FIT-fecal DNA test every 3 years, and flexible sigmoidoscopy every 5 to 10 years. These tests are appropriate screening tests, but each has disadvantages relative to the tier 1 tests. Because of limited evidence and current obstacles to use, capsule colonoscopy every 5 years is a third-tier test. We suggest that the Septin9 serum assay (Epigenomics, Seattle, Wash) not be used for screening. Screening should begin at age 50 years in average-risk persons, except in African Americans in whom limited evidence supports screening at 45 years. CRC incidence is rising in persons under age 50, and thorough diagnostic evaluation of young persons with suspected colorectal bleeding is recommended. Discontinuation of screening should be considered when persons up to date with screening, who have prior negative screening (particularly colonoscopy), reach age 75 or have <10 years of life expectancy. Persons without prior screening should be considered for screening up to age 85, depending on age and comorbidities. Persons with a family history of CRC or a documented advanced adenoma in a first-degree relative age <60 years or 2 first-degree relatives with these findings at any age are recommended to undergo screening by colonoscopy every 5 years, beginning 10 years before the age at diagnosis of the youngest affected relative or age 40, whichever is earlier. Persons with a single first-degree relative diagnosed at ≥60 years with CRC or an advanced adenoma can be offered average-risk screening options beginning at age 40 years.

          Related collections

          Most cited references 115

          • Record: found
          • Abstract: found
          • Article: not found

          Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology.

          In the United States, colorectal cancer (CRC) is the third most common cancer diagnosed among men and women and the second leading cause of death from cancer. CRC largely can be prevented by the detection and removal of adenomatous polyps, and survival is significantly better when CRC is diagnosed while still localized. In 2006 to 2007, the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology came together to develop consensus guidelines for the detection of adenomatous polyps and CRC in asymptomatic average-risk adults. In this update of each organization's guidelines, screening tests are grouped into those that primarily detect cancer early and those that can detect cancer early and also can detect adenomatous polyps, thus providing a greater potential for prevention through polypectomy. When possible, clinicians should make patients aware of the full range of screening options, but at a minimum they should be prepared to offer patients a choice between a screening test that primarily is effective at early cancer detection and a screening test that is effective at both early cancer detection and cancer prevention through the detection and removal of polyps. It is the strong opinion of these 3 organizations that colon cancer prevention should be the primary goal of screening.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Screening for Colorectal Cancer: US Preventive Services Task Force Recommendation Statement.

            Colorectal cancer is the second leading cause of cancer death in the United States. In 2016, an estimated 134,000 persons will be diagnosed with the disease, and about 49,000 will die from it. Colorectal cancer is most frequently diagnosed among adults aged 65 to 74 years; the median age at death from colorectal cancer is 68 years.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quality indicators for colonoscopy and the risk of interval cancer.

              Although rates of detection of adenomatous lesions (tumors or polyps) and cecal intubation are recommended for use as quality indicators for screening colonoscopy, these measurements have not been validated, and their importance remains uncertain. We used a multivariate Cox proportional-hazards regression model to evaluate the influence of quality indicators for colonoscopy on the risk of interval cancer. Data were collected from 186 endoscopists who were involved in a colonoscopy-based colorectal-cancer screening program involving 45,026 subjects. Interval cancer was defined as colorectal adenocarcinoma that was diagnosed between the time of screening colonoscopy and the scheduled time of surveillance colonoscopy. We derived data on quality indicators for colonoscopy from the screening program's database and data on interval cancers from cancer registries. The primary aim of the study was to assess the association between quality indicators for colonoscopy and the risk of interval cancer. A total of 42 interval colorectal cancers were identified during a period of 188,788 person-years. The endoscopist's rate of detection of adenomas was significantly associated with the risk of interval colorectal cancer (P=0.008), whereas the rate of cecal intubation was not significantly associated with this risk (P=0.50). The hazard ratios for adenoma detection rates of less than 11.0%, 11.0 to 14.9%, and 15.0 to 19.9%, as compared with a rate of 20.0% or higher, were 10.94 (95% confidence interval [CI], 1.37 to 87.01), 10.75 (95% CI, 1.36 to 85.06), and 12.50 (95% CI, 1.51 to 103.43), respectively (P=0.02 for all comparisons). The adenoma detection rate is an independent predictor of the risk of interval colorectal cancer after screening colonoscopy. 2010 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                Am. J. Gastroenterol.
                The American journal of gastroenterology
                Springer Nature
                1572-0241
                0002-9270
                Jul 2017
                : 112
                : 7
                Affiliations
                [1 ] Indiana University School of Medicine, Indianapolis, Indiana, USA.
                [2 ] University of California San Diego, San Diego, California, USA.
                [3 ] VA Puget Sound Health Care System, University of Washington, Seattle, Washington, USA.
                [4 ] Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
                [5 ] Eastern Virginia Medical School, Norfolk, Virginia, USA.
                [6 ] San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
                [7 ] Kaiser Permanente Medical Center, Walnut Creek, California, USA.
                [8 ] Oregon Health and Science University, Portland, Oregon, USA.
                [9 ] VA Medical Center, White River Junction, Vermont, and Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
                Article
                ajg2017174
                10.1038/ajg.2017.174
                28555630

                Comments

                Comment on this article