104
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

      research-article
      1 , , 1 , 2
      BMC Evolutionary Biology
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations.

          Results

          We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra ( E. quagga, formerly E. burchelli). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations ( d N /d S) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection ( d N < d S). However, the most likely evolutionary codon models allowed for variable rates of selection across codon sites at both loci and, at the DQA, supported the hypothesis of positive selection acting on specific sites.

          Conclusions

          Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the DQA, positive selection was occurring at antigen binding sites, suggesting that a few selected residues may play a significant role in equid immune function. Future studies in natural equid populations will be valuable for understanding the functional significance of the uniquely diverse DRA locus and for elucidating the mechanism maintaining diversity at these MHC loci.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Codon-substitution models for heterogeneous selection pressure at amino acid sites.

          Comparison of relative fixation rates of synonymous (silent) and nonsynonymous (amino acid-altering) mutations provides a means for understanding the mechanisms of molecular sequence evolution. The nonsynonymous/synonymous rate ratio (omega = d(N)d(S)) is an important indicator of selective pressure at the protein level, with omega = 1 meaning neutral mutations, omega 1 diversifying positive selection. Amino acid sites in a protein are expected to be under different selective pressures and have different underlying omega ratios. We develop models that account for heterogeneous omega ratios among amino acid sites and apply them to phylogenetic analyses of protein-coding DNA sequences. These models are useful for testing for adaptive molecular evolution and identifying amino acid sites under diversifying selection. Ten data sets of genes from nuclear, mitochondrial, and viral genomes are analyzed to estimate the distributions of omega among sites. In all data sets analyzed, the selective pressure indicated by the omega ratio is found to be highly heterogeneous among sites. Previously unsuspected Darwinian selection is detected in several genes in which the average omega ratio across sites is 1. Genes undergoing positive selection include the beta-globin gene from vertebrates, mitochondrial protein-coding genes from hominoids, the hemagglutinin (HA) gene from human influenza virus A, and HIV-1 env, vif, and pol genes. Tests for the presence of positively selected sites and their subsequent identification appear quite robust to the specific distributional form assumed for omega and can be achieved using any of several models we implement. However, we encountered difficulties in estimating the precise distribution of omega among sites from real data sets.
            • Record: found
            • Abstract: found
            • Article: not found

            Concerted and birth-and-death evolution of multigene families.

            Until around 1990, most multigene families were thought to be subject to concerted evolution, in which all member genes of a family evolve as a unit in concert. However, phylogenetic analysis of MHC and other immune system genes showed a quite different evolutionary pattern, and a new model called birth-and-death evolution was proposed. In this model, new genes are created by gene duplication and some duplicate genes stay in the genome for a long time, whereas others are inactivated or deleted from the genome. Later investigations have shown that most non-rRNA genes including highly conserved histone or ubiquitin genes are subject to this type of evolution. However, the controversy over the two models is still continuing because the distinction between the two models becomes difficult when sequence differences are small. Unlike concerted evolution, the model of birth-and-death evolution can give some insights into the origins of new genetic systems or new phenotypic characters.
              • Record: found
              • Abstract: found
              • Article: not found

              Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene.

              Several codon-based models for the evolution of protein-coding DNA sequences are developed that account for varying selection intensity among amino acid sites. The "neutral model" assumes two categories of sites at which amino acid replacements are either neutral or deleterious. The "positive-selection model" assumes an additional category of positively selected sites at which nonsynonymous substitutions occur at a higher rate than synonymous ones. This model is also used to identify target sites for positive selection. The models are applied to a data set of the V3 region of the HIV-1 envelope gene, sequenced at different years after the infection of one patient. The results provide strong support for variable selection intensity among amino acid sites The neutral model is rejected in favor of the positive-selection model, indicating the operation of positive selection in the region. Positively selected sites are found in both the V3 region and the flanking regions.

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2011
                18 May 2011
                : 11
                : 128
                Affiliations
                [1 ]Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
                [2 ]Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
                Article
                1471-2148-11-128
                10.1186/1471-2148-11-128
                3126738
                21592397
                c1523f8b-dba5-45dd-9c6e-8421e27e9265
                Copyright ©2011 Kamath and Getz; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 November 2010
                : 18 May 2011
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article

                Related Documents Log