14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          β-catenin/CTNNB1 is an intracellular scaffold protein that interacts with adhesion molecules (E-cadherin/CDH1, N-cadherin/CDH2, VE-cadherin/CDH5 and α-catenins), transmembrane-type mucins (MUC1/CD227 and MUC16/CA125), signaling regulators (APC, AXIN1, AXIN2 and NHERF1/EBP50) and epigenetic or transcriptional regulators (BCL9, BCL9L, CREBBP/CBP, EP300/p300, FOXM1, MED12, SMARCA4/BRG1 and TCF/LEF). Gain-of-function CTTNB1 mutations are detected in bladder cancer, colorectal cancer, gastric cancer, liver cancer, lung cancer, pancreatic cancer, prostate cancer and uterine cancer, whereas loss-of-function CTNNB1 mutations are also detected in human cancer. ABCB1, ALDH1A1, ASCL2, ATF3, AXIN2, BAMBI, CCND1, CD44, CLDN1, CTLA4, DKK1, EDN1, EOMES, FGF18, FGF20, FZD7, IL10, JAG1, LEF1, LGR5, MITF, MSX1, MYC, NEUROD1, NKD1, NODAL, NOTCH2, NOTUM, NRCAM, OPN, PAX3, PPARD, PTGS2, RNF43, SNAI1, SP5, TCF7, TERT, TNFRSF19, VEGFA and ZNRF3 are representative β-catenin target genes. β-catenin signaling is involved in myofibroblast activation and subsequent pulmonary fibrosis, in addition to other types of fibrosis. β-catenin and NF-κB signaling activation are involved in field cancerization in the stomach associated with Helicobacter pylori ( H. pylori) infection and in the liver associated with hepatitis C virus (HCV) infection and other etiologies. β-catenin-targeted therapeutics are functionally classified into β-catenin inhibitors targeting upstream regulators (AZ1366, ETC-159, G007-LK, GNF6231, ipafricept, NVP-TNKS656, rosmantuzumab, vantictumab, WNT-C59, WNT974 and XAV939), β-catenin inhibitors targeting protein-protein interactions (CGP049090, CWP232228, E7386, ICG-001, LF3 and PRI-724), β-catenin inhibitors targeting epigenetic regulators (PKF118-310), β-catenin inhibitors targeting mediator complexes (CCT251545 and cortistatin A) and β-catenin inhibitors targeting transmembrane-type transcriptional outputs, including CD44v6, FZD7 and LGR5. Eradicating H. pylori and HCV is the optimal approach for the first-line prevention of gastric cancer and hepatocellular carcinoma (HCC), respectively. However, β-catenin inhibitors may be applicable for the prevention of organ fibrosis, second-line HCC prevention and treating β-catenin-driven cancer. The multi-layered prevention and treatment strategy of β-catenin-related human diseases is necessary for the practice of personalized medicine and implementation of precision medicine.

          Related collections

          Most cited references168

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Comprehensive molecular characterization of gastric adenocarcinoma

          Gastric cancer is a leading cause of cancer deaths, but analysis of its molecular and clinical characteristics has been complicated by histological and aetiological heterogeneity. Here we describe a comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project. We propose a molecular classification dividing gastric cancer into four subtypes: tumours positive for Epstein–Barr virus, which display recurrent PIK3CA mutations, extreme DNA hypermethylation, and amplification of JAK2, CD274 (also known as PD-L1) and PDCD1LG2 (also knownasPD-L2); microsatellite unstable tumours, which show elevated mutation rates, including mutations of genes encoding targetable oncogenic signalling proteins; genomically stable tumours, which are enriched for the diffuse histological variant and mutations of RHOA or fusions involving RHO-family GTPase-activating proteins; and tumours with chromosomal instability, which show marked aneuploidy and focal amplification of receptor tyrosine kinases. Identification of these subtypes provides a roadmap for patient stratification and trials of targeted therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Liver fibrosis.

            Liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and often requires liver transplantation. Our knowledge of the cellular and molecular mechanisms of liver fibrosis has greatly advanced. Activated hepatic stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines such as TGF-beta1, angiotensin II, and leptin. Reversibility of advanced liver fibrosis in patients has been recently documented, which has stimulated researchers to develop antifibrotic drugs. Emerging antifibrotic therapies are aimed at inhibiting the accumulation of fibrogenic cells and/or preventing the deposition of extracellular matrix proteins. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans is unknown. This review summarizes recent progress in the study of the pathogenesis and diagnosis of liver fibrosis and discusses current antifibrotic strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutational Landscape of Metastatic Cancer Revealed from Prospective Clinical Sequencing of 10,000 Patients

              Tumor molecular profiling is a fundamental component of precision oncology, enabling the identification of genomic alterations in genes and pathways that can be targeted therapeutically. The existence of recurrent targetable alterations across distinct histologically-defined tumor types, coupled with an expanding portfolio of molecularly-targeted therapies, demands flexible and comprehensive approaches to profile clinically significant genes across the full spectrum of cancers. We established a large-scale, prospective clinical sequencing initiative utilizing a comprehensive assay, MSK-IMPACT, through which we have compiled matched tumor and normal sequence data from a unique cohort of more than 10,000 patients with advanced cancer and available pathological and clinical annotations. Using these data, we identified clinically relevant somatic mutations, novel non-coding alterations, and mutational signatures that were shared among common and rare tumor types. Patients were enrolled on genomically matched clinical trials at a rate of 11%. To enable discovery of novel biomarkers and deeper investigation into rare alterations and tumor types, all results are publicly accessible.
                Bookmark

                Author and article information

                Journal
                Int J Mol Med
                Int. J. Mol. Med
                IJMM
                International Journal of Molecular Medicine
                D.A. Spandidos
                1107-3756
                1791-244X
                August 2018
                17 May 2018
                17 May 2018
                : 42
                : 2
                : 713-725
                Affiliations
                Department of Omics Network, National Cancer Center, Chuo Ward, Tokyo 104-0045, Japan
                Author notes
                Correspondence to: Dr Masaru Katoh, Department of Omics Network, National Cancer Center, 5-1-1 Tsukiji, Chuo Ward, Tokyo 104-0045, Japan, E-mail: mkatoh-kkr@ 123456umin.ac.jp
                Article
                ijmm-42-02-0713
                10.3892/ijmm.2018.3689
                6034925
                29786110
                c163668b-be38-4e9c-a9f6-5aab273f0f60
                Copyright: © Katoh et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 18 December 2017
                : 16 May 2018
                Categories
                Articles

                cardiovascular fibrosis,immune evasion,fzd5,oncolytic adenovirus,porcupine,rspo3,tankyrase,tumor microenvironment,tgf-β,wnt2b

                Comments

                Comment on this article