31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distinctive mitochondrial genome of Calanoid copepod Calanus sinicus with multiple large non-coding regions and reshuffled gene order: Useful molecular markers for phylogenetic and population studies

      research-article
      1 , 2 , 1 , , 1 , 3
      BMC Genomics
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Copepods are highly diverse and abundant, resulting in extensive ecological radiation in marine ecosystems. Calanus sinicus dominates continental shelf waters in the northwest Pacific Ocean and plays an important role in the local ecosystem by linking primary production to higher trophic levels. A lack of effective molecular markers has hindered phylogenetic and population genetic studies concerning copepods. As they are genome-level informative, mitochondrial DNA sequences can be used as markers for population genetic studies and phylogenetic studies.

          Results

          The mitochondrial genome of C. sinicus is distinct from other arthropods owing to the concurrence of multiple non-coding regions and a reshuffled gene arrangement. Further particularities in the mitogenome of C. sinicus include low A + T-content, symmetrical nucleotide composition between strands, abbreviated stop codons for several PCGs and extended lengths of the genes atp6 and atp8 relative to other copepods. The monophyletic Copepoda should be placed within the Vericrustacea. The close affinity between Cyclopoida and Poecilostomatoida suggests reassigning the latter as subordinate to the former. Monophyly of Maxillopoda is rejected. Within the alignment of 11 C. sinicus mitogenomes, there are 397 variable sites harbouring three 'hotspot' variable sites and three microsatellite loci.

          Conclusion

          The occurrence of the circular subgenomic fragment during laboratory assays suggests that special caution should be taken when sequencing mitogenomes using long PCR. Such a phenomenon may provide additional evidence of mitochondrial DNA recombination, which appears to have been a prerequisite for shaping the present mitochondrial profile of C. sinicus during its evolution. The lack of synapomorphic gene arrangements among copepods has cast doubt on the utility of gene order as a useful molecular marker for deep phylogenetic analysis. However, mitochondrial genomic sequences have been valuable markers for resolving phylogenetic issues concerning copepods. The variable site maps of C. sinicus mitogenomes provide a solid foundation for population genetic studies.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Consed: a graphical tool for sequence finishing.

          Sequencing of large clones or small genomes is generally done by the shotgun approach (Anderson et al. 1982). This has two phases: (1) a shotgun phase in which a number of reads are generated from random subclones and assembled into contigs, followed by (2) a directed, or finishing phase in which the assembly is inspected for correctness and for various kinds of data anomalies (such as contaminant reads, unremoved vector sequence, and chimeric or deleted reads), additional data are collected to close gaps and resolve low quality regions, and editing is performed to correct assembly or base-calling errors. Finishing is currently a bottleneck in large-scale sequencing efforts, and throughput gains will depend both on reducing the need for human intervention and making it as efficient as possible. We have developed a finishing tool, consed, which attempts to implement these principles. A distinguishing feature relative to other programs is the use of error probabilities from our programs phred and phrap as an objective criterion to guide the entire finishing process. More information is available at http:// www.genome.washington.edu/consed/consed. html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mitochondrial genome: structure, transcription, translation and replication.

            J Taanman (1999)
            Mitochondria play a central role in cellular energy provision. The organelles contain their own genome with a modified genetic code. The mammalian mitochondrial genome is transmitted exclusively through the female germ line. The human mitochondrial DNA (mtDNA) is a double-stranded, circular molecule of 16569 bp and contains 37 genes coding for two rRNAs, 22 tRNAs and 13 polypeptides. The mtDNA-encoded polypeptides are all subunits of enzyme complexes of the oxidative phosphorylation system. Mitochondria are not self-supporting entities but rely heavily for their functions on imported nuclear gene products. The basic mechanisms of mitochondrial gene expression have been solved. Cis-acting mtDNA sequences have been characterised by sequence comparisons, mapping studies and mutation analysis both in vitro and in patients harbouring mtDNA mutations. Characterisation of trans-acting factors has proven more difficult but several key enzymes involved in mtDNA replication, transcription and protein synthesis have now been biochemically identified and some have been cloned. These studies revealed that, although some factors may have an additional function elsewhere in the cell, most are unique to mitochondria. It is expected that cell cultures of patients with mitochondrial diseases will increasingly be used to address fundamental questions about mtDNA expression.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Incorporating Molecular Evolution into Phylogenetic Analysis, and a New Compilation of Conserved Polymerase Chain Reaction Primers for Animal Mitochondrial DNA

                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2011
                27 January 2011
                : 12
                : 73
                Affiliations
                [1 ]KLMEES and JBMERS, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
                [2 ]Graduate University, Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
                [3 ]Huaihai Institute of Technology, 59 Cangwu Road, Lianyungang 222005, China
                Article
                1471-2164-12-73
                10.1186/1471-2164-12-73
                3041745
                21269523
                c16490ca-0ab3-47e7-af30-50c2ad4b475a
                Copyright ©2011 Minxiao et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 July 2010
                : 27 January 2011
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article