Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Functional enrichment analysis is an essential task for the interpretation of gene lists derived from large-scale genetic, transcriptomic and proteomic studies. WebGestalt (WEB-based GEne SeT AnaLysis Toolkit) has become one of the popular software tools in this field since its publication in 2005. For the last 7 years, WebGestalt data holdings have grown substantially to satisfy the requirements of users from different research areas. The current version of WebGestalt supports 8 organisms and 201 gene identifiers from various databases and different technology platforms, making it directly available to the fast growing omics community. Meanwhile, by integrating functional categories derived from centrally and publicly curated databases as well as computational analyses, WebGestalt has significantly increased the coverage of functional categories in various biological contexts including Gene Ontology, pathway, network module, gene–phenotype association, gene–disease association, gene–drug association and chromosomal location, leading to a total of 78 612 functional categories. Finally, new interactive features, such as pathway map, hierarchical network visualization and phenotype ontology visualization have been added to WebGestalt to help users better understand the enrichment results. WebGestalt can be freely accessed through http://www.webgestalt.org or http://bioinfo.vanderbilt.edu/webgestalt/.

      Related collections

      Most cited references 26

      • Record: found
      • Abstract: not found
      • Article: not found

      Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.

        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.

        DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists

          Functional analysis of large gene lists, derived in most cases from emerging high-throughput genomic, proteomic and bioinformatics scanning approaches, is still a challenging and daunting task. The gene-annotation enrichment analysis is a promising high-throughput strategy that increases the likelihood for investigators to identify biological processes most pertinent to their study. Approximately 68 bioinformatics enrichment tools that are currently available in the community are collected in this survey. Tools are uniquely categorized into three major classes, according to their underlying enrichment algorithms. The comprehensive collections, unique tool classifications and associated questions/issues will provide a more comprehensive and up-to-date view regarding the advantages, pitfalls and recent trends in a simpler tool-class level rather than by a tool-by-tool approach. Thus, the survey will help tool designers/developers and experienced end users understand the underlying algorithms and pertinent details of particular tool categories/tools, enabling them to make the best choices for their particular research interests.
            Bookmark

            Author and article information

            Affiliations
            1Department of Biomedical Informatics, 2Advanced Computing Center for Research and Education and 3Department of Cancer Biology, Vanderbilt University, Nashville, TN 37203, USA
            Author notes
            *To whom correspondence should be addressed. Tel: +1 615 936 0090; Fax: +1 615 322 0502; Email: bing.zhang@ 123456vanderbilt.edu
            Journal
            Nucleic Acids Res
            Nucleic Acids Res
            nar
            nar
            Nucleic Acids Research
            Oxford University Press
            0305-1048
            1362-4962
            July 2013
            23 May 2013
            23 May 2013
            : 41
            : Web Server issue
            : W77-W83
            23703215 3692109 10.1093/nar/gkt439 gkt439
            © The Author(s) 2013. Published by Oxford University Press.

            This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

            Counts
            Pages: 7
            Categories
            Articles
            Custom metadata
            1 July 2013

            Genetics

            Comments

            Comment on this article