13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accuracy of Image Guidance Using Free-Breathing Cone-Beam Computed Tomography for Stereotactic Lung Radiotherapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Movement of the target object during cone-beam computed tomography (CBCT) leads to motion blurring artifacts. The accuracy of manual image matching in image-guided radiotherapy depends on the image quality. We aimed to assess the accuracy of target position localization using free-breathing CBCT during stereotactic lung radiotherapy. The Vero4DRT linear accelerator device was used for the examinations. Reference point discrepancies between the MV X-ray beam and the CBCT system were calculated using a phantom device with a centrally mounted steel ball. The precision of manual image matching between the CBCT and the averaged intensity (AI) images restructured from four-dimensional CT (4DCT) was estimated with a respiratory motion phantom, as determined in evaluations by five independent operators. Reference point discrepancies between the MV X-ray beam and the CBCT image-guidance systems, categorized as left-right (LR), anterior-posterior (AP), and superior-inferior (SI), were 0.33 ± 0.09, 0.16 ± 0.07, and 0.05 ± 0.04 mm, respectively. The LR, AP, and SI values for residual errors from manual image matching were -0.03 ± 0.22, 0.07 ± 0.25, and -0.79 ± 0.68 mm, respectively. The accuracy of target position localization using the Vero4DRT system in our center was 1.07 ± 1.23 mm (2 SD). This study experimentally demonstrated the sufficient level of geometric accuracy using the free-breathing CBCT and the image-guidance system mounted on the Vero4DRT. However, the inter-observer variation and systematic localization error of image matching substantially affected the overall geometric accuracy. Therefore, when using the free-breathing CBCT images, careful consideration of image matching is especially important.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Task Group 142 report: quality assurance of medical accelerators.

          The task group (TG) for quality assurance of medical accelerators was constituted by the American Association of Physicists in Medicine's Science Council under the direction of the Radiation Therapy Committee and the Quality Assurance and Outcome Improvement Subcommittee. The task group (TG-142) had two main charges. First to update, as needed, recommendations of Table II of the AAPM TG-40 report on quality assurance and second, to add recommendations for asymmetric jaws, multileaf collimation (MLC), and dynamic/virtual wedges. The TG accomplished the update to TG-40, specifying new test and tolerances, and has added recommendations for not only the new ancillary delivery technologies but also for imaging devices that are part of the linear accelerator. The imaging devices include x-ray imaging, photon portal imaging, and cone-beam CT. The TG report was designed to account for the types of treatments delivered with the particular machine. For example, machines that are used for radiosurgery treatments or intensity-modulated radiotherapy (IMRT) require different tests and/or tolerances. There are specific recommendations for MLC quality assurance for machines performing IMRT. The report also gives recommendations as to action levels for the physicists to implement particular actions, whether they are inspection, scheduled action, or immediate and corrective action. The report is geared to be flexible for the physicist to customize the QA program depending on clinical utility. There are specific tables according to daily, monthly, and annual reviews, along with unique tables for wedge systems, MLC, and imaging checks. The report also gives specific recommendations regarding setup of a QA program by the physicist in regards to building a QA team, establishing procedures, training of personnel, documentation, and end-to-end system checks. The tabulated items of this report have been considerably expanded as compared with the original TG-40 report and the recommended tolerances accommodate differences in the intended use of the machine functionality (non-IMRT, IMRT, and stereotactic delivery).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A method for incorporating organ motion due to breathing into 3D dose calculations.

            A method is proposed that incorporates the effects of intratreatment organ motion due to breathing on the dose calculations for the treatment of liver disease. Our method is based on the convolution of a static dose distribution with a probability distribution function (PDF) which describes the nature of the motion. The organ motion due to breathing is assumed here to be one-dimensional (in the superior-inferior direction), and is modeled using a periodic but asymmetric function (more time spent at exhale versus inhale). The dose distribution calculated using convolution-based methods is compared to the static dose distribution using dose difference displays and the effective volume (Veff) of the uninvolved liver, as per a liver dose escalation protocol in use at our institution. The convolution-based calculation is also compared to direct simulations that model individual fractions of a treatment. Analysis shows that incorporation of the organ motion could lead to changes in the dose prescribed for a treatment based on the Veff of the uninvolved liver. Comparison of convolution-based calculations and direct simulation of various worst-case scenarios indicates that a single convolution-based calculation is sufficient to predict the dose distribution for the example treatment plan given.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179.

              Commercial CT-based image-guided radiotherapy (IGRT) systems allow widespread management of geometric variations in patient setup and internal organ motion. This document provides consensus recommendations for quality assurance protocols that ensure patient safety and patient treatment fidelity for such systems.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                8 May 2015
                2015
                : 10
                : 5
                : e0126152
                Affiliations
                [1 ]Department of Therapeutic Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
                [2 ]Department of Radiation Oncology, Okayama Central Hospital, Okayama, Japan
                [3 ]Department of Radiation Oncology, Graduate School of Medical Science, Kinki University, Osaka, Japan
                [4 ]Division of Clinical Radiology Service, Okayama Central Hospital, Okayama, Japan
                University of Nebraska Medical Center, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TK HM. Performed the experiments: TK HM SN RM YO SK TS. Analyzed the data: TK HM SN. Wrote the paper: TK HM.

                [¤]

                Current address: Department of Radiology, Kyoto-Katsura Hospital, Kyoto, Japan.

                Article
                PONE-D-14-49015
                10.1371/journal.pone.0126152
                4425686
                25954809
                c16b2bec-150f-4202-b4bc-5bc0fe7860c5
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 9 November 2014
                : 30 March 2015
                Page count
                Figures: 6, Tables: 5, Pages: 14
                Funding
                This work was supported by the Foundation for Promotion of Cancer Research in Japan ( http://www.fpcr.or.jp). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional funding was received for this study.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article