4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nature designs tough collagen: explaining the nanostructure of collagen fibrils.

      Proceedings of the National Academy of Sciences of the United States of America
      Biomechanical Phenomena, Collagen, chemistry, genetics, ultrastructure, Humans, Models, Molecular, Models, Theoretical, Protein Conformation, Stress, Mechanical

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Collagen is a protein material with superior mechanical properties. It consists of collagen fibrils composed of a staggered array of ultra-long tropocollagen (TC) molecules. Theoretical and molecular modeling suggests that this natural design of collagen fibrils maximizes the strength and provides large energy dissipation during deformation, thus creating a tough and robust material. We find that the mechanics of collagen fibrils can be understood quantitatively in terms of two critical molecular length scales chi(S) and chi(R) that characterize when (i) deformation changes from homogeneous intermolecular shear to propagation of slip pulses and when (ii) covalent bonds within TC molecules begin to fracture, leading to brittle-like failure. The ratio chi(S)/chi(R) indicates which mechanism dominates deformation. Our modeling rigorously links the chemical properties of individual TC molecules to the macroscopic mechanical response of fibrils. The results help to explain why collagen fibers found in nature consist of TC molecules with lengths in the proximity of 300 nm and advance the understanding how collagen diseases that change intermolecular adhesion properties influence mechanical properties.

          Related collections

          Author and article information

          Journal
          16895989
          1567872
          10.1073/pnas.0603216103

          Chemistry
          Biomechanical Phenomena,Collagen,chemistry,genetics,ultrastructure,Humans,Models, Molecular,Models, Theoretical,Protein Conformation,Stress, Mechanical

          Comments

          Comment on this article